Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma

Abstract

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Here, we performed high-resolution copy-number analysis on 125 HCC tumors and whole-exome sequencing on 24 of these tumors. We identified 135 homozygous deletions and 994 somatic mutations of genes with predicted functional consequences. We found new recurrent alterations in four genes (ARID1A, RPS6KA3, NFE2L2 and IRF2) not previously described in HCC. Functional analyses showed tumor suppressor properties for IRF2, whose inactivation, exclusively found in hepatitis B virus (HBV)-related tumors, led to impaired TP53 function. In contrast, inactivation of chromatin remodelers was frequent and predominant in alcohol-related tumors. Moreover, association of mutations in specific genes (RPS6KA3-AXIN1 and NFE2L2-CTNNB1) suggested that Wnt/β-catenin signaling might cooperate in liver carcinogenesis with both oxidative stress metabolism and Ras/mitogen-activated protein kinase (MAPK) pathways. This study provides insight into the somatic mutational landscape in HCC and identifies interactions between mutations in oncogene and tumor suppressor gene mutations related to specific risk factors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Profiles of verified mutations with functional consequences in HCC.
Figure 2: Overview of mutations and major associated clinical features.
Figure 3: Major pathways commonly altered by somatic mutations or homozygous gene deletions.
Figure 4: IRF2 is a new tumor suppressor gene in HCC that controls the p53 pathway.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. El-Serag, H.B. & Rudolph, K.L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557–2576 (2007).

    Article  CAS  Google Scholar 

  2. Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127, 2893–2917 (2010).

    Article  CAS  Google Scholar 

  3. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  Google Scholar 

  4. Tao, Y. et al. Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data. Proc. Natl. Acad. Sci. USA 108, 12042–12047 (2011).

    Article  CAS  Google Scholar 

  5. Totoki, Y. et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat. Genet. 43, 464–469 (2011).

    Article  CAS  Google Scholar 

  6. Denissenko, M.F., Pao, A., Pfeifer, G.P. & Tang, M. Slow repair of bulky DNA adducts along the nontranscribed strand of the human p53 gene may explain the strand bias of transversion mutations in cancers. Oncogene 16, 1241–1247 (1998).

    Article  CAS  Google Scholar 

  7. Hainaut, P. & Pfeifer, G.P. Patterns of p53 G→T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis 22, 367–374 (2001).

    Article  CAS  Google Scholar 

  8. Bressac, B., Kew, M., Wands, J. & Ozturk, M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 350, 429–431 (1991).

    Article  CAS  Google Scholar 

  9. Hsu, I.C. et al. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350, 427–428 (1991).

    Article  CAS  Google Scholar 

  10. Nault, J.C. & Zucman-Rossi, J. Genetics of hepatobiliary carcinogenesis. Semin. Liver Dis. 31, 173–187 (2011).

    Article  CAS  Google Scholar 

  11. Sawey, E.T. et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell 19, 347–358 (2011).

    Article  CAS  Google Scholar 

  12. Rebouissou, S. et al. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457, 200–204 (2009).

    Article  CAS  Google Scholar 

  13. Bluteau, O. et al. Bi-allelic inactivation of TCF1 in hepatic adenomas. Nat. Genet. 32, 312–315 (2002).

    Article  CAS  Google Scholar 

  14. Li, M. et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat. Genet. 43, 828–829 (2011).

    Article  CAS  Google Scholar 

  15. Boyault, S. et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45, 42–52 (2007).

    Article  CAS  Google Scholar 

  16. Tamura, T., Yanai, H., Savitsky, D. & Taniguchi, T. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 26, 535–584 (2008).

    Article  CAS  Google Scholar 

  17. Han, K.J., Jiang, L. & Shu, H.B. Regulation of IRF2 transcriptional activity by its sumoylation. Biochem. Biophys. Res. Commun. 372, 772–778 (2008).

    Article  CAS  Google Scholar 

  18. Pettersson, S., Kelleher, M., Pion, E., Wallace, M. & Ball, K.L. Role of Mdm2 acid domain interactions in recognition and ubiquitination of the transcription factor IRF-2. Biochem. J. 418, 575–585 (2009).

    Article  CAS  Google Scholar 

  19. Guan, B., Wang, T.L. & Shih Ie, M. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 71, 6718–6727 (2011).

    Article  CAS  Google Scholar 

  20. Wilson, B.G. & Roberts, C.W. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 11, 481–492 (2011).

    Article  CAS  Google Scholar 

  21. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

    Article  CAS  Google Scholar 

  22. Wiegand, K.C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    Article  CAS  Google Scholar 

  23. Jones, S. et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum. Mutat. 33, 100–103 (2012).

    Article  CAS  Google Scholar 

  24. Wang, K. et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet. 43, 1219–1223 (2011).

    Article  CAS  Google Scholar 

  25. Douville, E. & Downward, J. EGF induced SOS phosphorylation in PC12 cells involves P90 RSK-2. Oncogene 15, 373–383 (1997).

    Article  CAS  Google Scholar 

  26. Schneider, A., Mehmood, T., Pannetier, S. & Hanauer, A. Altered ERK/MAPK signaling in the hippocampus of the mrsk2_KO mouse model of Coffin-Lowry syndrome. J. Neurochem. 119, 447–459 (2011).

    Article  CAS  Google Scholar 

  27. DeNicola, G.M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).

    Article  CAS  Google Scholar 

  28. Kim, Y.R. et al. Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J. Pathol. 220, 446–451 (2010).

    Article  CAS  Google Scholar 

  29. Shibata, T. et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl. Acad. Sci. USA 105, 13568–13573 (2008).

    Article  CAS  Google Scholar 

  30. Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009).

    Article  CAS  Google Scholar 

  31. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  Google Scholar 

  32. Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  Google Scholar 

  33. Peiffer, D.A. et al. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res. 16, 1136–1148 (2006).

    Article  CAS  Google Scholar 

  34. Staaf, J. et al. Normalization of Illumina Infinium whole-genome SNP data improves copy number estimates and allelic intensity ratios. BMC Bioinformatics 9, 409 (2008).

    Article  Google Scholar 

  35. Popova, T. et al. Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays. Genome Biol. 10, R128 (2009).

    Article  Google Scholar 

  36. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  Google Scholar 

  37. Draghici, S. et al. A systems biology approach for pathway level analysis. Genome Res. 17, 1537–1545 (2007).

    Article  CAS  Google Scholar 

  38. Antonov, A.V., Schmidt, E.E., Dietmann, S., Krestyaninova, M. & Hermjakob, H. R spider: a network-based analysis of gene lists by combining signaling and metabolic pathways from Reactome and KEGG databases. Nucleic Acids Res. 38, W78–W83 (2010).

    Article  CAS  Google Scholar 

  39. Rebouissou, S. et al. HNF1α inactivation promotes lipogenesis in human hepatocellular adenoma independently of SREBP-1 and carbohydrate-response element–binding protein (ChREBP) activation. J. Biol. Chem. 282, 14437–14446 (2007).

    Article  CAS  Google Scholar 

  40. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We warmly thank T. Burguiere, G. Thomas, R. Fahraeus and C. Mlynarczyk for their helpful participation in this work. We also thank J. Saric, C. Laurent, B. Le Bail, A. Rullier, A. Sa Cunha, J.T. Van Nhieu, D. Cherqui and D. Azoulay for contributing to tissue collection. This work was supported by INCa with the ICGC project, the Ligue Nationale Contre le Cancer (Cartes d'Identité des Tumeurs program), the PAIR-CHC project NoFLIC (funded by INCa and the Association pour la Recherche Contre le Cancer, ARC), the Réseau National Centre de Recherches Biocosmétiques (CRB) Foie, HEPTROMIC (Framework Programme 7, FP7) and BioIntelligence (OSEO). G.A. is supported by a fellowship from the Agence Nationale de Recherches sur le Sida et les Hepatites Virales (ANRS).

Author information

Authors and Affiliations

Authors

Contributions

C.G., S.I., M.L. and I.B.M. designed, analyzed and verified the whole-exome sequencing data. G.A. and Y.L. designed and performed the IRF2 analyses. S.I. performed statistical analyses. C.G., G.A., Y.L., L.P., I.B.M. and G.C. performed the sequencing validation. J.C. and P.B.-S. provided samples and pathological reviewing. F.D., B.C., C.B. and A.L. provided samples and clinical information. S.I., C.G. and E.C. contributed to pathway analyses. E.L. and S.I. analyzed copy-number variant data. F.C. organized the project through the ICGC and participated in the achievement of the study. J.Z.-R. designed and coordinated the overall study. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Jessica Zucman-Rossi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–8 (PDF 2955 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guichard, C., Amaddeo, G., Imbeaud, S. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 44, 694–698 (2012). https://doi.org/10.1038/ng.2256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2256

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer