Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: the role of gastrointestinal hormones in appetite and obesity

Abstract

The obesity epidemic is fast becoming one of the leading causes of mortality and morbidity worldwide. Over the past 30 years, gastrointestinal hormones have been increasingly understood to have an important role as regulators of appetite and energy balance in obese individuals. The levels of these hormones are modulated by bariatric surgery, and understanding how they are affected by such procedures can contribute to our comprehension of the underlying mechanisms by which these hormones affect obesity and its treatment. In this Review, we consider several gastrointestinal hormones that can contribute to obesity by modulating the activity of the gut–brain axis, and examine their specific effects on appetite, hunger and energy balance. Better understanding of the mechanisms by which these peptides exert their effects may enable the development of improved weight-loss medications and new treatments for obesity.

Key Points

  • The obesity epidemic has highlighted the importance of understanding the mechanisms governing appetite and weight regulation

  • Over the past 30 years, gastrointestinal hormones have been found to have an integrated role in appetite regulation via their action on the 'gut–brain axis'

  • Bariatric surgery can achieve sustained weight loss in morbidly obese individuals and has been shown to modulate the levels of gastrointestinal hormones

  • Understanding the underlying mechanism of action of gastrointestinal hormones could provide useful insights into weight regulation, and contribute to the development of treatments for obesity

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of appetite regulation via the gut–brain axis.

Similar content being viewed by others

References

  1. WHO (2004) Obesity; preventing and managing the global epidemic. Report of a WHO consultation on obesity. Geneva, Switzerland

  2. Banks WA (1980) Evidence for a cholecystokinin gut–brain axis with modulation by bombesin. Peptides 1: 347–351

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz MW et al. (2000) Central nervous system control of food intake. Nature 404: 661–671

    Article  CAS  PubMed  Google Scholar 

  4. Cone RD et al. (2001) The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord 25: S63–S67

    Article  CAS  PubMed  Google Scholar 

  5. Larsen PJ and Kristensen P (1997) The neuropeptide Y (Y4) receptor is highly expressed in neurones of the rat dorsal vagal complex. Brain Res Mol Brain Res 48: 1–6

    Article  CAS  PubMed  Google Scholar 

  6. Balasubramaniam A et al. (2006) Neuropeptide Y (NPY) Y4 receptor selective agonists based on NPY (32–36): development of an anorectic Y4 receptor selective agonist with picomolar affinity. J Med Chem 49: 2661–2665

    Article  CAS  PubMed  Google Scholar 

  7. Flier JS (2004) Obesity wars: molecular progress confronts an expanding epidemic. Cell 116: 337–350

    Article  CAS  PubMed  Google Scholar 

  8. Grill HJ and Smith GP (1988) Cholecystokinin decreases sucrose intake in chronic decerebrate rats. Am J Physiol 254: R853–R856

    CAS  PubMed  Google Scholar 

  9. Ellacott KL et al. (2006) Interactions between gut peptides and the central melanocortin system in the regulation of energy homeostasis. Peptides 27: 340–349

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz MW et al. (2003) Is the energy homeostasis system inherently biased toward weight gain? Diabetes 52: 232–238

    Article  CAS  PubMed  Google Scholar 

  11. Brady LS et al. (1990) Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats. Neuroendocrinology 52: 441–447

    Article  CAS  PubMed  Google Scholar 

  12. Leibel RL et al. (1995) Changes in energy expenditure resulting from altered body weight. N Engl J Med 332: 621–628

    Article  CAS  PubMed  Google Scholar 

  13. Gibbs J et al. (1973) Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 84: 488–495

    Article  CAS  PubMed  Google Scholar 

  14. Murphy KG and Bloom SR (2006) Gut hormones and the regulation of energy homeostasis. Nature 444: 854–859

    Article  CAS  PubMed  Google Scholar 

  15. Murakami N et al. (2002) Role for central ghrelin in food intake and secretion profile of stomach ghrelin in rats. J Endocrinol 174: 283–288

    Article  CAS  PubMed  Google Scholar 

  16. Tschop M et al. (2000) Ghrelin induces adiposity in rodents. Nature 407: 194–198

    Article  Google Scholar 

  17. Kojima M et al. (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402: 656–660

    Article  CAS  PubMed  Google Scholar 

  18. Baldanzi G et al. (2002) Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J Cell Biol 159: 1029–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakazato M et al. (2001) A role for ghrelin in the central regulation of feeding. Nature 409: 194–198

    Article  CAS  PubMed  Google Scholar 

  20. Wren AM et al. (2000) The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141: 4325–4328

    Article  CAS  PubMed  Google Scholar 

  21. Cowley MA et al. (2003) The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37: 649–661

    Article  CAS  PubMed  Google Scholar 

  22. le Roux CW et al. (2005) Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J Clin Endocrinol Metab 90: 4521–4524

    Article  CAS  PubMed  Google Scholar 

  23. Theander-Carrillo C et al. (2006) Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest 116: 1983–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patel AD et al. (2006) Ghrelin stimulates insulin induced glucose uptake in adipocytes. Regul Pept 134: 17–22

    Article  CAS  PubMed  Google Scholar 

  25. Cummings DE et al. (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50: 1714–1719

    Article  CAS  PubMed  Google Scholar 

  26. Murray CD et al. (2006) The effect of different macronutrient infusions on appetite, ghrelin and peptide YY in parenterally fed patients. Clin Nutr 25: 626–633

    Article  CAS  PubMed  Google Scholar 

  27. Feinle-Bisset C et al. (2005) Fat digestion is required for the suppression of ghrelin and stimulation of peptide YY and pancreatic polypeptide secretion by intraduodenal lipid. Am J Physiol. Endocrinol Metab 289: E948–5E953

    Article  CAS  PubMed  Google Scholar 

  28. Cummings DE et al. (2002) Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346: 1623–1630

    Article  PubMed  Google Scholar 

  29. Wren AM et al. (2001) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86: 5992

    Article  CAS  PubMed  Google Scholar 

  30. Druce MR et al. (2005) Ghrelin increases food intake in obese as well as lean subjects. Int J Obes Relat Metab Disord 29: 1130–1136

    Article  CAS  Google Scholar 

  31. English PJ et al. (2002) Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab 87: 2984

    Article  CAS  PubMed  Google Scholar 

  32. le Roux CW et al. (2005) Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects. J Clin Endocrinol Metab 90: 1068–1071

    Article  CAS  PubMed  Google Scholar 

  33. Sun Y et al. (2004) Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci USA 101: 4679–4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zigman JM et al. (2005) Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest 115: 3564–3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wortley KE et al. (2005) Absence of ghrelin protects against early onset obesity. J Clin Invest 115: 3573–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wortley KE et al. (2004) Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci USA 101: 8227–8232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang JV et al. (2005) Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effect on food intake. Science 310: 996–999

    Article  CAS  PubMed  Google Scholar 

  38. Nogueiras R et al. (2007) effects of obestatin on energy balance and growth hormone secretions in rodents. Endocrinology 148: 21–26

    Article  CAS  PubMed  Google Scholar 

  39. Seoane LM et al. (2006) Central obestatin administration does not modify either spontaneous or ghrelin-induced food intake in rats. J Endocrinol Invest 29: RC13–RC15

    Article  CAS  PubMed  Google Scholar 

  40. Holst B et al. (2007) GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology 148: 13–20

    Article  CAS  PubMed  Google Scholar 

  41. Jackson VR et al. (2006) GPR39 receptor expression in the mouse brain. Neuroreport 17: 813–816

    Article  CAS  PubMed  Google Scholar 

  42. Gourcerol G et al. (2007) Lack of obestatin effects on food intake: should obestatin be renamed ghrelin-associated peptide (GAP)? Reg. Pept 141: 1–7

    Article  CAS  Google Scholar 

  43. Batterham RL et al. (2003) Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab 88: 3989–3992

    Article  CAS  PubMed  Google Scholar 

  44. Clark JT et al. (1984) Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 115: 427–429

    Article  CAS  PubMed  Google Scholar 

  45. Whitcomb DC et al. (1997) Distribution of pancreatic polypeptide receptors in the rat brain. Brain Res 760: 137–149

    Article  CAS  PubMed  Google Scholar 

  46. Ueno N et al. (1999) Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice. Gastroenterology 117: 1427–1432

    Article  CAS  PubMed  Google Scholar 

  47. Liddle RA et al. (1985) Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest 75: 1144–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dockray GJ (1987) Peptides of the gut and brain: the cholecystokinins. Proc Nutr Soc 46: 119–124

    Article  CAS  PubMed  Google Scholar 

  49. Moran TH (2000) Cholecystokinin and satiety: current perspectives. Nutrition 16: 858–865

    Article  CAS  PubMed  Google Scholar 

  50. West DB et al. (1987) Lithium chloride, cholecystokinin and meal patterns: evidence that cholecystokinin suppresses meal size in rats without causing malaise. Appetite 8: 221–227

    Article  CAS  PubMed  Google Scholar 

  51. Asin KE et al. (1992) Effects of selective CCK receptor agonists on food intake after central or pheripheral administration in rats. Brain Res 571: 169–174

    Article  CAS  PubMed  Google Scholar 

  52. Dockray G (2004) Gut endocrine secretions and their relevance to satiety. Curr Opin Pharmacol 4: 557–560

    Article  CAS  PubMed  Google Scholar 

  53. Moran TH et al. (1998) Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Physiol 274: R618–R625

    CAS  PubMed  Google Scholar 

  54. Beglinger C et al. (2001) Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol Regul Integr Comp Physiol 280: R1149–R1154

    Article  CAS  PubMed  Google Scholar 

  55. West DB et al. (1984) Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol 246: R776–R787

    CAS  PubMed  Google Scholar 

  56. Crawley JN and Beinfeld MC (1983) Rapid development of tolerance to the behavioural actions of cholecystokinin. Nature 302: 703–706

    Article  CAS  PubMed  Google Scholar 

  57. Baggio LL and Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132: 2131–2157

    Article  CAS  PubMed  Google Scholar 

  58. Creutzfeldt W et al. (1978) Gastric inhibitory polypeptide (GIP) and insulin in obesity: increased response to stimulation and defective feedback control of serum levels. Diabetologia 14: 15–24

    Article  CAS  PubMed  Google Scholar 

  59. Salera M et al. (1982) Gastric inhibitory polypeptide release after oral glucose: relationship to glucose tolerance, diabetes mellitus and obesity. J Clin Endocrinol Metab 55: 329–336

    Article  CAS  PubMed  Google Scholar 

  60. Miyawaki K et al. (2002) Inhibition of gastric inhibitory polypeptide signalling prevents obesity. Nat Med 8: 738–742

    Article  CAS  PubMed  Google Scholar 

  61. Ding WG and Gromada J (1997) Protein Kinase A-dependent stimulation of exocytosis in mouse pancreatic beta-cells by glucose-dependent insulinotropic polypeptide. Diabetes 46: 615–621

    Article  CAS  PubMed  Google Scholar 

  62. Lacroix A et al. (1992) Gastric inhibitory polypeptide-dependent cortisol hypersecretion-a new cause of Cushing's syndrome. N Engl J Med 327: 974–980

    Article  CAS  PubMed  Google Scholar 

  63. Holst JJ (2004) On the physiology of GIP and GLP-1. Horm Metab Res 36: 747–754

    Article  CAS  PubMed  Google Scholar 

  64. Larsen PJ et al. (1997) Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 138: 4445–4455

    Article  CAS  PubMed  Google Scholar 

  65. Abbott CR et al. (2005) The inhibitory effects of peripheral administration of peptide YY (3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstemhypothalamic pathway. Brain Res 1044 127–131

    Article  CAS  PubMed  Google Scholar 

  66. Verdich C et al. (2001) The role of postprandial releases of insulin and incretin hormones in meal-induced satiety-effect of obesity and weight reduction. Int J Obes Relat Metab Disord 25: 1206–1214

    Article  CAS  PubMed  Google Scholar 

  67. Fukase N et al. (1993) Hypersecretion of truncated glucagon-like peptide-1 and gastric inhibitory polypeptide in obese patients. Diabet Med 10: 44–49

    Article  CAS  PubMed  Google Scholar 

  68. Feinle C et al. (2002) Plasma glucagon-like peptide-1 (GLP-1) responses to duodenal fat and glucose infusions in lean and obese men. Peptides 23: 1491–1495

    Article  CAS  PubMed  Google Scholar 

  69. Kreymann B et al. (1987) Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2: 1300–1304

    Article  CAS  PubMed  Google Scholar 

  70. Edwards CM et al. (1999) Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9–39. Diabetes 48: 86–93

    Article  CAS  PubMed  Google Scholar 

  71. Gutzwiller JP et al. (1999) Glucagonlike peptide-1: a potent regulator of food intake in humans. Gut 44: 81–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Edwards CM et al. (2001) Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am J Physiol. Endocrinol Metab 281: E155–E161

    Article  CAS  PubMed  Google Scholar 

  73. Turton MD et al. (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379: 69–72

    Article  CAS  PubMed  Google Scholar 

  74. O'Shea D et al. (1996) A role for central glucagon-like peptide-1 in temperature regulation. Neuroreport 7: 830–832

    Article  CAS  PubMed  Google Scholar 

  75. Ruiz-Grande C et al. (1992) Lipolytic action of glucagons-like peptides in isolated rat adipocytes. Peptides 13: 13–16

    Article  CAS  PubMed  Google Scholar 

  76. Villanueva-Penacarrillo ML et al. (2001) Effect of GLP-1 on lipid metabolism in human adipocytes. Horm Metab Res 33: 73–77

    Article  CAS  PubMed  Google Scholar 

  77. Todd JF et al. (1998) Subcutaneous glucagon-like peptide-1 improves postprandial glycaemic control over a 3-week period in patients with early type 2 diabetes. Clin Sci (Lond) 95: 325–329

    Article  CAS  Google Scholar 

  78. Kolterman OG et al. (2003) Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab 88: 3082–3089

    Article  CAS  PubMed  Google Scholar 

  79. Soltani N et al. (2007) In vivo expression of GLP-1/IgG-Fc fusion protein enhances beta-cell mass and protects against streptozotocin-induced diabetes. Gene Ther 14: 981–988

    Article  CAS  PubMed  Google Scholar 

  80. DeFronzo RA et al. (2005) Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28: 1092–1100

    Article  CAS  PubMed  Google Scholar 

  81. Kendall DM et al. (2005) Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 28: 1083–1091

    Article  CAS  PubMed  Google Scholar 

  82. Cohen MA et al. (2003) Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 88: 4696–4701

    Article  CAS  PubMed  Google Scholar 

  83. Dakin CL et al. (2004) Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 145: 2687–2695

    Article  CAS  PubMed  Google Scholar 

  84. Baggio LL et al. (2004) Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127: 546–558

    Article  CAS  PubMed  Google Scholar 

  85. Born W et al. (2002) Receptors for calcitonin gene-related peptide, adrenomedullin, and amylin: the contributions of novel receptor-activity-modifying proteins. Receptors Channels 8: 201–209

    Article  CAS  PubMed  Google Scholar 

  86. Wynne K et al. (2005) Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 54: 2390–2395

    Article  CAS  PubMed  Google Scholar 

  87. Wynne K et al. (2006) Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes (Lond) 30: 1729–1736

    Article  CAS  Google Scholar 

  88. Tatemoto K and Mutt V (1980) Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature 285: 417–418

    Article  CAS  PubMed  Google Scholar 

  89. Adrian TE et al. (1985) Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89: 1070–1077

    Article  CAS  PubMed  Google Scholar 

  90. Ali-Rachedi A et al. (1984) Peptide YY (PYY) immunoreactivity is co-stored with glucagon-related immunoreactants in endocrine cells of the gut and pancreas. Histochemistry 80: 487–491

    Article  CAS  PubMed  Google Scholar 

  91. Allen JM et al. (1984) Effects of peptide YY and neuropeptide Y on gastric emptying in man. Digestion 30: 255–262

    Article  CAS  PubMed  Google Scholar 

  92. Adrian TE et al. (1985) Effect of peptide YY on gastric, pancreatic, and biliary function in humans. Gastroenterology 89: 494–499

    Article  CAS  PubMed  Google Scholar 

  93. le Roux CW et al. (2006) Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 147: 3–8

    Article  CAS  PubMed  Google Scholar 

  94. Tschöp M et al. (2004) Physiology: does gut hormone PYY3-36 decrease food intake in rodents? Nature 430: 1 p following 165; discussion 2 p following 165

  95. Degen L et al. (2005) Effect of peptide YY3–36 on food intake in humans. Gastroenterology 129: 1430–1436

    Article  CAS  PubMed  Google Scholar 

  96. Koegler FH et al. (205) Peptide YY(3–36) inhibits morning, but not evening, food intake and decreases body weight in rhesus macaques. Diabetes 54: 3198–3204

    Article  CAS  PubMed  Google Scholar 

  97. Chelikani PK et al. (2005) Intravenous infusion of peptide YY (3–36) potently inhibits food intake in rats. Endocrinology 146: 879–888

    Article  CAS  PubMed  Google Scholar 

  98. Boey D et al. (2006) Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity. Diabetologia 49: 1360–1370

    Article  CAS  PubMed  Google Scholar 

  99. Batterham RL et al. (2002) Gut hormone PYY (3–36) physiologically inhibits food intake. Nature 418: 650–654

    Article  CAS  PubMed  Google Scholar 

  100. Acuna-Goycolea C and van den Pol AN (2005) Peptide YY (3–36) inhibits both anorexigenic proopiomelanocortin and orexigenic neuropeptide Y neurons: implications for hypothalamic regulation of energy homeostasis. J Neurosci 25: 10510–10519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Abbott CR et al. (2005) Blockade of the neuropeptide YY2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3–36) on food intake. Brain Res 1043: 139–144

    Article  CAS  PubMed  Google Scholar 

  102. Batterham RL et al. (2003) Inhibition of food intake in obese subjects by peptide YY3–36. N Engl J Med 349: 941–948

    Article  CAS  PubMed  Google Scholar 

  103. Stock S et al. (2005) Ghrelin, peptide YY, glucose-dependent insulino-tropic polypeptide, and hunger responses to a mixed meal in anorexic, obese and control female adolescents. J Clin Endocrinol Metab 90: 2161–2168

    Article  CAS  PubMed  Google Scholar 

  104. Korner J et al. (2005) Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY and insulin. J Clin Endocrinol Metab 90: 359–365

    Article  CAS  PubMed  Google Scholar 

  105. Batterham RL et al. (2006) Critical role of peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab 4: 223–233

    Article  CAS  PubMed  Google Scholar 

  106. Halatchev IG and Cone RD (2005) Peripheral administration of PYY (3–36) produces conditioned taste aversion in mice. Cell Metab 1: 159–168

    Article  CAS  PubMed  Google Scholar 

  107. Talsania T et al. (2005) Peripheral exendin-4 and peptide YY (3–36) synergistically reduce food intake through different mechanisms in mice. Endocrinology 146: 3748–3756

    Article  CAS  PubMed  Google Scholar 

  108. Greenough A et al. (1998) Untangling the effects of hunger, anxiety, and nausea on energy intake during intravenous cholecystokinin octapeptide (CCK-8) infusion. Physiol Behav 65: 303–310

    Article  CAS  PubMed  Google Scholar 

  109. Naslund E et al. (2004) Prandial subcutaneous injections of glucagonlike peptide-1 cause weight loss in obese human subjects. Br J Nutr 91: 439–446

    Article  PubMed  CAS  Google Scholar 

  110. Adrian TE et al. (1986) Peptide YY abnormalities in gastrointestinal diseases. Gastroenterology 90: 379–384

    Article  CAS  PubMed  Google Scholar 

  111. Di Francesco V et al. (2005) Delayed postprandial gastric emptying and impaired gallbladder contraction together with elevated cholecystokinin and peptide YY serum levels sustain satiety and inhibit hunger in healthy elderly persons. J Gerontol A Biol Sci Med Sci 60: 1581–1585

    Article  PubMed  Google Scholar 

  112. Sjöström L et al. (2007) Swedish Obese Subjects Study. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 357: 741–752

    Article  PubMed  Google Scholar 

  113. Sjöström L et al. (2004) Swedish Obese Subjects Study Scientific Group. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 351: 2683–2693

    Article  PubMed  Google Scholar 

  114. Borg CM et al. (2006) Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg 93: 210–215

    Article  CAS  PubMed  Google Scholar 

  115. le Roux CW et al. (2007) Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg 246: 780–785

    Article  PubMed  Google Scholar 

  116. Naslund E et al. (1997) Gastrointestinal hormones and gastric emptying 20 years after jejunoileal bypass for massive obesity. Int J Obes Relat Metab Disord 21: 387–392

    Article  CAS  PubMed  Google Scholar 

  117. Aylwin S (2005) Gastrointestinal surgery and gut hormones. Curr Opin Endocrinol. Diabetes 12: 89–98

    Article  CAS  Google Scholar 

  118. Neary NM et al. (2005) Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology 146: 5120–5127

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carel W le Roux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, R., Ashrafian, H. & le Roux, C. Mechanisms of Disease: the role of gastrointestinal hormones in appetite and obesity. Nat Rev Gastroenterol Hepatol 5, 268–277 (2008). https://doi.org/10.1038/ncpgasthep1118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpgasthep1118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing