Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metals induce transient folding and activation of the twister ribozyme

Abstract

Twister is a small ribozyme present in almost all kingdoms of life that rapidly self-cleaves in variety of divalent metal ions. We used activity assays, bulk FRET and single-molecule FRET (smFRET) to understand how different metal ions promote folding and self-cleavage of the Oryza sativa twister ribozyme. Although most ribozymes require additional Mg2+ for catalysis, twister inverts this expectation, requiring 20–30 times less Mg2+ to self-cleave than to fold. Transition metals such as Co2+, Ni2+ and Zn2+ activate twister more efficiently than Mg2+ ions. Although twister is fully active in ≤ 0.5 mM MgCl2, smFRET experiments showed that the ribozyme visits the folded state infrequently under these conditions. Comparison of folding and self-cleavage rates indicates that most folding events lead to catalysis, which correlates with metal bond strength. Thus, the robust activity of twister reports on transient metal ion binding under physiological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-cleavage of a minimal Oryza sativa twister ribozyme at low Mg2+.
Figure 2: Folding of twister ribozyme in MgCl2.
Figure 3: Pseudoknot mutations impair folding.
Figure 4: Kinetics of RNA folding.
Figure 5: Twister is efficiently activated by transition metal ions.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Jimenez, R.M., Polanco, J.A. & Lupták, A. Chemistry and biology of self-cleaving ribozymes. Trends Biochem. Sci. 40, 648–661 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roth, A. et al. A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat. Chem. Biol. 10, 56–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Weinberg, Z. et al. New classes of self-cleaving ribozymes revealed by comparative genomics analysis. Nat. Chem. Biol. 11, 606–610 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Furukawa, K. et al. Bacterial riboswitches cooperatively bind Ni2+ or Co2+ ions and control expression of heavy metal transporters. Mol. Cell 57, 1088–1098 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Price, I.R., Gaballa, A., Ding, F., Helmann, J.D. & Ke, A. Mn2+-sensing mechanisms of yybP-ykoY orphan riboswitches. Mol. Cell 57, 1110–1123 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DeRose, V.J. Metal ion binding to catalytic RNA molecules. Curr. Opin. Struct. Biol. 13, 317–324 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, Y., Wilson, T.J., McPhee, S.A. & Lilley, D.M. Crystal structure and mechanistic investigation of the twister ribozyme. Nat. Chem. Biol. 10, 739–744 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Ren, A. et al. In-line alignment and Mg2+ coordination at the cleavage site of the env22 twister ribozyme. Nat. Commun. 5, 5534 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Wilson, T.J., Liu, Y., Domnick, C., Kath-Schorr, S. & Lilley, D.M. The novel chemical mechanism of the twister ribozyme. J. Am. Chem. Soc. 138, 6151–6162 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Gaines, C.S. & York, D.M. Ribozyme catalysis with a twist: active state of the twister ribozyme in solution predicted from molecular simulation. J. Am. Chem. Soc. 138, 3058–3065 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, S. et al. Role of the active site guanine in the glmS ribozyme self-cleavage mechanism: quantum mechanical/molecular mechanical free energy simulations. J. Am. Chem. Soc. 137, 784–798 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Gebetsberger, J. & Micura, R. Unwinding the twister ribozyme: from structure to mechanism. Wiley Interdiscip. Rev. RNA 8 (2017).

  13. Vušurović, N., Altman, R.B., Terry, D.S., Micura, R. & Blanchard, S.C. Pseudoknot formation seeds the twister ribozyme cleavage reaction coordinate. J. Am. Chem. Soc. 139, 8186–8193 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Košutić, M. et al. A mini-twister variant and impact of residues/cations on the phosphodiester cleavage of this ribozyme class. Angew. Chem. Int. Edn. Engl. 54, 15128–15133 (2015).

    Article  Google Scholar 

  15. Ucisik, M.N., Bevilacqua, P.C. & Hammes-Schiffer, S. Molecular dynamics study of twister ribozyme: role of Mg2+ ions and the hydrogen-bonding network in the active site. Biochemistry 55, 3834–3846 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Alatossava, T., Jütte, H., Kuhn, A. & Kellenberger, E. Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187. J. Bacteriol. 162, 413–419 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Froschauer, E.M., Kolisek, M., Dieterich, F., Schweigel, M. & Schweyen, R.J. Fluorescence measurements of free [Mg2+] by use of mag-fura 2 in Salmonella enterica. FEMS Microbiol. Lett. 237, 49–55 (2004).

    CAS  PubMed  Google Scholar 

  18. Zhong, W., Schobert, C. & Komor, E. Transport of magnesium ions in the phloem of Ricinus communis L. seedlings. Planta 190, 114–119 (1993).

    Article  CAS  Google Scholar 

  19. Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA 93, 6264–6268 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kilburn, D., Roh, J.H., Guo, L., Briber, R.M. & Woodson, S.A. Molecular crowding stabilizes folded RNA structure by the excluded volume effect. J. Am. Chem. Soc. 132, 8690–8696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paudel, B.P. & Rueda, D. Molecular crowding accelerates ribozyme docking and catalysis. J. Am. Chem. Soc. 136, 16700–16703 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dupuis, N.F., Holmstrom, E.D. & Nesbitt, D.J. Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics. Proc. Natl. Acad. Sci. USA 111, 8464–8469 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bokinsky, G. et al. Single-molecule transition-state analysis of RNA folding. Proc. Natl. Acad. Sci. USA 100, 9302–9307 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leffler, J.E. Parameters for the description of transition states. Science 117, 340–341 (1953).

    Article  CAS  PubMed  Google Scholar 

  26. Tanford, C. Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv. Protein Chem. 24, 1–95 (1970).

    Article  CAS  PubMed  Google Scholar 

  27. Jackson, S.E. & Fersht, A.R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Koculi, E., Thirumalai, D. & Woodson, S.A. Counterion charge density determines the position and plasticity of RNA folding transition states. J. Mol. Biol. 359, 446–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Sosnick, T.R. Kinetic barriers and the role of topology in protein and RNA folding. Protein Sci. 17, 1308–1318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Irving, H. & Willams, R.J.P. Order of stability of metal complexes. Nature 162, 746–747 (1948).

    Article  CAS  Google Scholar 

  31. Woodson, S.A. Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr. Opin. Chem. Biol. 9, 104–109 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Draper, D.E., Grilley, D. & Soto, A.M. Ions and RNA folding. Annu. Rev. Biophys. Biomol. Struct. 34, 221–243 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Ward, W.L., Plakos, K. & DeRose, V.J. Nucleic acid catalysis: metals, nucleobases, and other cofactors. Chem. Rev. 114, 4318–4342 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eiler, D., Wang, J. & Steitz, T.A. Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proc. Natl. Acad. Sci. USA 111, 13028–13033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kobori, S. & Yokobayashi, Y. High-throughput mutational analysis of a twister ribozyme. Angew. Chem. Int. Edn Engl. 55, 10354–10357 (2016).

    Article  CAS  Google Scholar 

  36. Saunders, A.M. & DeRose, V.J. Beyond Mg2+: functional interactions between RNA and transition metals. Curr. Opin. Chem. Biol. 34, 152–158 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Dahm, S.C. & Uhlenbeck, O.C. Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30, 9464–9469 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Pan, T. & Uhlenbeck, O.C. A small metalloribozyme with a two-step mechanism. Nature 358, 560–563 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Leonarski, F., D'Ascenzo, L. & Auffinger, P. Binding of metals to purine N7 nitrogen atoms and implications for nucleic acids: A CSD survey. Inorganica Chim. Acta 452, 82–89 (2016).

    Article  CAS  Google Scholar 

  40. Sigel, R.K. & Sigel, H. A stability concept for metal ion coordination to single-stranded nucleic acids and affinities of individual sites. Acc. Chem. Res. 43, 974–984 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi, N.I. & Tanoi, K. Critical issues in the study of magnesium transport systems and magnesium deficiency symptoms in plants. Int. J. Mol. Sci. 16, 23076–23093 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoneyama, T., Ishikawa, S. & Fujimaki, S. Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling: metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification. Int. J. Mol. Sci. 16, 19111–19129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takahashi, R., Bashir, K., Ishimaru, Y., Nishizawa, N.K. & Nakanishi, H. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal. Behav. 7, 1605–1607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Solomatin, S. & Herschlag, D. Methods of site-specific labeling of RNA with fluorescent dyes. Methods Enzymol. 469, 47–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Hua, B. et al. An improved surface passivation method for single-molecule studies. Nat. Methods 11, 1233–1236 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, H. et al. Protein-guided RNA dynamics during early ribosome assembly. Nature 506, 334–338 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McKinney, S.A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank K. Sarkar and S. Abeysirigunawardena for their assistance and M. Greenberg, K. Karlin and J. Morrow for helpful discussion. This work was supported by a grant from the National Science Foundation (MCB-1616081 to S.W.) and the US National Institutes of Health (GM 065367 to T.H.).

Author information

Authors and Affiliations

Authors

Contributions

S.P., T.H. and S.A.W. designed the experiments; S.P. and B.H. performed the single-molecule experiments and analyzed the data; S.P. and D.Z. performed activity assays; S.P. performed other experiments; S.P., T.H. and S.A.W. wrote the manuscript; and all of the authors interpreted the data and reviewed the text and figures.

Corresponding author

Correspondence to Subrata Panja.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–11. (PDF 1396 kb)

Reporting Summary

Reporting Summary. (PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panja, S., Hua, B., Zegarra, D. et al. Metals induce transient folding and activation of the twister ribozyme. Nat Chem Biol 13, 1109–1114 (2017). https://doi.org/10.1038/nchembio.2459

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2459

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing