Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extracellular 4′-phosphopantetheine is a source for intracellular coenzyme A synthesis

Abstract

The metabolic cofactor coenzyme A (CoA) gained renewed attention because of its roles in neurodegeneration, protein acetylation, autophagy and signal transduction. The long-standing dogma is that eukaryotic cells obtain CoA exclusively via the uptake of extracellular precursors, especially vitamin B5, which is intracellularly converted through five conserved enzymatic reactions into CoA. This study demonstrates an alternative mechanism that allows cells and organisms to adjust intracellular CoA levels by using exogenous CoA. Here CoA was hydrolyzed extracellularly by ectonucleotide pyrophosphatases to 4′-phosphopantetheine, a biologically stable molecule able to translocate through membranes via passive diffusion. Inside the cell, 4′-phosphopantetheine was enzymatically converted back to CoA by the bifunctional enzyme CoA synthase. Phenotypes induced by intracellular CoA deprivation were reversed when exogenous CoA was provided. Our findings answer long-standing questions in fundamental cell biology and have major implications for the understanding of CoA-related diseases and therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CoA supplementation rescues PANK-impaired phenotypes.
Figure 2: CoA rescues impaired PANK phenotypes of C. elegans and Drosophila.
Figure 3: CoA is converted into stable 4′-phosphopantetheine (PPanSH) in vitro, in serum and in vivo in Drosophila and mice.
Figure 4: Conversion of CoA into stable 4′-phosphopantetheine in serum is mediated by heat-unstable and metal-activated enzymes.
Figure 5: External supplementation with 4′-phosphopantetheine (PPanSH) rescues CoA-deprived phenotypes.
Figure 6: External supplementation with CoA rescues dPANK/fbl and dPPCDC phenotypes but not COASY-impaired phenotypes.

Similar content being viewed by others

References

  1. Baddiley, J., Thain, E.M., Novelli, G.D. & Lipmann, F. Structure of coenzyme A. Nature 171, 76 (1953).

    Article  CAS  PubMed  Google Scholar 

  2. Strauss, E. Coenzyme A biosynthesis and enzymology. in Comprehensive Natural Products II (eds. Liu, H.-W. & Mander, L.) 351–410 (Elsevier, 2010).

  3. Shi, L. & Tu, B.P. Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 110, 7318–7323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Siudeja, K. et al. Impaired coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration. EMBO Mol. Med. 3, 755–766 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takahashi, H., McCaffery, J.M., Irizarry, R.A. & Boeke, J.D. Nucleocytosolic acetyl-coenzyme A synthetase is required for histone acetylation and global transcription. Mol. Cell 23, 207–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Eisenberg, T. et al. Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme A stimulates autophagy and prolongs lifespan. Cell Metab. 19, 431–444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mariño, G. et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell 53, 710–725 (2014).

    Article  PubMed  Google Scholar 

  9. McCoy, F. et al. Metabolic activation of CaMKII by coenzyme A. Mol. Cell 52, 325–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Srinivasan, B. & Sibon, O.C. Coenzyme A, more than 'just' a metabolic cofactor. Biochem. Soc. Trans. 42, 1075–1079 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Hoagland, M.B. & Novelli, G.D. Biosynthesis of coenzyme A from phospho-pantetheine and of pantetheine from pantothenate. J. Biol. Chem. 207, 767–773 (1954).

    CAS  PubMed  Google Scholar 

  12. Bosveld, F. et al. De novo CoA biosynthesis is required to maintain DNA integrity during development of the Drosophila nervous system. Hum. Mol. Genet. 17, 2058–2069 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Daugherty, M. et al. Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics. J. Biol. Chem. 277, 21431–21439 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Kupke, T., Hernandez-Acosta, P. & Culianez-Macia, F.A. 4′-phosphopantetheine and coenzyme A biosynthesis in plants. J. Biol. Chem. 278, 38229–38237 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Zhyvoloup, A. et al. Molecular cloning of CoA synthase. The missing link in CoA biosynthesis. J. Biol. Chem. 277, 22107–22110 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Shimizu, S., Kubo, K., Tani, Y. & Ogata, K. Purification and properties of pantothenate kinase from Brevibacterium ammoniagenes IFO 12071. Biosci. Biotechnol. Biochem. 37, 2863–2870 (1973).

    CAS  Google Scholar 

  17. Dusi, S. et al. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am. J. Hum. Genet. 94, 11–22 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, B. et al. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat. Genet. 28, 345–349 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Rana, A. et al. Pantethine rescues a Drosophila model for pantothenate kinase-associated neurodegeneration. Proc. Natl. Acad. Sci. USA 107, 6988–6993 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brunetti, D. et al. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model. Brain 137, 57–68 (2014).

    Article  PubMed  Google Scholar 

  21. Wittwer, C.T., Gahl, W.A., Butler, J.D., Zatz, M. & Thoene, J.G. Metabolism of pantethine in cystinosis. J. Clin. Invest. 76, 1665–1672 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Y.M. et al. Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis. Chem. Biol. 14, 291–302 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shibata, K., Nakai, T. & Fukuwatari, T. Simultaneous high-performance liquid chromatography determination of coenzyme A, dephospho-coenzyme A, and acetyl-coenzyme A in normal and pantothenic acid-deficient rats. Anal. Biochem. 430, 151–155 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Novelli, G.D., Schmetz, F.J. Jr. & Kaplan, N.O. Enzymatic degradation and resynthesis of coenzyme A. J. Biol. Chem. 206, 533–545 (1954).

    CAS  PubMed  Google Scholar 

  25. Reilly, S.J., Tillander, V., Ofman, R., Alexson, S.E. & Hunt, M.C. The nudix hydrolase 7 is an Acyl-CoA diphosphatase involved in regulating peroxisomal coenzyme A homeostasis. J. Biochem. 144, 655–663 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Shibata, K., Gross, C.J. & Henderson, L.M. Hydrolysis and absorption of pantothenate and its coenzymes in the rat small intestine. J. Nutr. 113, 2107–2115 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Skrede, S. The degradation of CoA: subcellular localization and kinetic properties of CoA- and dephospho-CoA pyrophosphatase. Eur. J. Biochem. 38, 401–407 (1973).

    Article  CAS  PubMed  Google Scholar 

  28. Trams, E.G., Stahl, W.L. & Robinson, J. Formation of S-acyl pantetheine from acyl-coenzyme A by plasma membranes. Biochim. Biophys. Acta 163, 472–482 (1968).

    Article  CAS  PubMed  Google Scholar 

  29. Fernandez, N.J. & Kidney, B.A. Alkaline phosphatase: beyond the liver. Vet. Clin. Pathol. 36, 223–233 (2007).

    Article  PubMed  Google Scholar 

  30. McLennan, A.G. The Nudix hydrolase superfamily. Cell. Mol. Life Sci. 63, 123–143 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Rücker, B. et al. Biochemical characterization of ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP, E.C. 3.1.4.1) from rat heart left ventricle. Mol. Cell. Biochem. 306, 247–254 (2007).

    Article  PubMed  Google Scholar 

  32. Jansen, S. et al. Structure of NPP1, an ectonucleotide pyrophosphatase/phosphodiesterase involved in tissue calcification. Structure 20, 1948–1959 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. AbdelRaheim, S.R. & McLennan, A.G. The Caenorhabditis elegans Y87G2A.14 Nudix hydrolase is a peroxisomal coenzyme A diphosphatase. BMC Biochem. 3, 5 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Grobben, B. et al. Ecto-nucleotide pyrophosphatase modulates the purinoceptor-mediated signal transduction and is inhibited by purinoceptor antagonists. Br. J. Pharmacol. 130, 139–145 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gu, X. et al. A new fluorometric turn-on assay for alkaline phosphatase and inhibitor screening based on aggregation and deaggregation of tetraphenylethylene molecules. Analyst 138, 2427–2431 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Mensch, J. et al. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability. Eur. J. Pharm. Biopharm. 74, 495–502 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Rubio, S., Whitehead, L., Larson, T.R., Graham, I.A. & Rodriguez, P.L. The coenzyme A biosynthetic enzyme phosphopantetheine adenylyltransferase plays a crucial role in plant growth, salt/osmotic stress resistance, and seed lipid storage. Plant Physiol. 148, 546–556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horie, S., Isobe, M. & Suga, T. Changes in CoA pools in hepatic peroxisomes of the rat under various conditions. J. Biochem. 99, 1345–1352 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Jackowski, S. & Rock, C.O. Metabolism of 4′-phosphopantetheine in Escherichia coli. J. Bacteriol. 158, 115–120 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Davaapil, H., Tsuchiya, Y. & Gout, I. Signalling functions of coenzyme A and its derivatives in mammalian cells. Biochem. Soc. Trans. 42, 1056–1062 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Manolopoulos, P. et al. Acyl derivatives of coenzyme A inhibit platelet function via antagonism at P2Y1 and P2Y12 receptors: a new finding that may influence the design of anti-thrombotic agents. Platelets 19, 134–145 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Skrede, S. & Halvorsen, O. Mitochondrial biosynthesis of coenzyme A. Biochem. Biophys. Res. Commun. 91, 1536–1542 (1979).

    Article  CAS  PubMed  Google Scholar 

  43. Rhee, H.W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leonardi, R., Rock, C.O., Jackowski, S. & Zhang, Y.M. Activation of human mitochondrial pantothenate kinase 2 by palmitoylcarnitine. Proc. Natl. Acad. Sci. USA 104, 1494–1499 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fiermonte, G., Paradies, E., Todisco, S., Marobbio, C.M. & Palmieri, F. A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3′,5′-diphosphate in human mitochondria. J. Biol. Chem. 284, 18152–18159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moolman, W.J., de Villiers, M. & Strauss, E. Recent advances in targeting coenzyme A biosynthesis and utilization for antimicrobial drug development. Biochem. Soc. Trans. 42, 1080–1086 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Saliba, K.J. & Spry, C. Exploiting the coenzyme A biosynthesis pathway for the identification of new antimalarial agents: the case for pantothenamides. Biochem. Soc. Trans. 42, 1087–1093 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Mandel, A.L., La Clair, J.J. & Burkart, M.D. Modular synthesis of pantetheine and phosphopantetheine. Org. Lett. 6, 4801–4803 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission's Seventh Framework Programme (grant number FP7/2007-2013, HEALTH-F2-2011, grant agreement number 277984, TIRCON to V.T., H.P., S.H. and O.C.M.S.), a GUIDE research school grant (to B.S.), a VICI grant (NWO-grant 865.10.012 to O.S.) and Telethon GGP11088 (to V.T.). Part of the work was performed at the UMCG Microscopy and Imaging Center (UMIC), which is sponsored by NWO grant 175-010-2009-023. We thank P.G. Tepper and R. Van Merkerk (Pharmaceutical Biology, University of Groningen) for providing HPLC technical assistance and J.-W. Kok and D. Hoekstra (Department of Cell Biology, UMCG) for helpful discussions. We also thank T. de Boer and F. Oostebring from the Analytical Biochemical Laboratory BV (ABL, Assen, the Netherlands) for mass spectrometry analysis. We are grateful to the PKAN patients and their families who contributed samples to this study.

Author information

Authors and Affiliations

Authors

Contributions

B.S., M.B., R.A.L., G.K., H.P., S.H., V.T. and O.C.M.S. designed the research. B.S., M.B., M.v.d.Z., B.K., C.C., R.A.L., O.S., A.P. and N.A.G. performed experiments. B.S., M.B., R.A.L. and O.C.M.S. analyzed results. E.A.A.N., G.K., H.P., S.H., V.T., D.-J.R., N.A.G. and O.C.M.S. supervised the research. B.S., N.A.G. and O.C.M.S. wrote the manuscript.

Corresponding author

Correspondence to Ody C M Sibon.

Ethics declarations

Competing interests

B.S., O.C.M.S., G.K., H.P. and A.P. are co-inventors on European patent application EP 2 868 662 A1. B.S., O.C.M.S., G.K. and H.P. are co-inventors on Slovenian patent application P-201400452. B.S., O.C.M.S., G.K., H.P. and S.H. are co-inventors on European patent application EP 15468006.0. H.P. and G.K. are shareholders in Acies Bio, Ltd.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–16 and Supplementary Note. (PDF 7615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, B., Baratashvili, M., van der Zwaag, M. et al. Extracellular 4′-phosphopantetheine is a source for intracellular coenzyme A synthesis. Nat Chem Biol 11, 784–792 (2015). https://doi.org/10.1038/nchembio.1906

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1906

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing