Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclic polymers from alkynes

Abstract

Cyclic polymers have dramatically different physical properties compared with those of their equivalent linear counterparts. However, the exploration of cyclic polymers is limited because of the inherent challenges associated with their synthesis. Conjugated linear polyacetylenes are important materials for electrical conductivity, paramagnetic susceptibility, optical nonlinearity, photoconductivity, gas permeability, liquid crystallinity and chain helicity. However, their cyclic analogues are unknown, and therefore the ability to examine how a cyclic topology influences their properties is currently not possible. We have solved this challenge and now report a tungsten catalyst supported by a tetraanionic pincer ligand that can rapidly polymerize alkynes to form conjugated macrocycles in high yield. The catalyst works by tethering the ends of the polymer to the metal centre to overcome the inherent entropic penalty of cyclization. Gel-permeation chromatography, dynamic and static light scattering, viscometry and chemical tests are all consistent with theoretical predictions and provide unambiguous confirmation of a cyclic topology. Access to a wide variety of new cyclic polymers is now possible by simply choosing the appropriate alkyne monomer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Improved catalyst preparation.
Figure 2: Molecular structure of 4 with ellipsoids drawn at the 50% probability level and disordered THF atoms and lattice solvent molecule (pentane) removed for clarity.
Figure 3: Proposed ring-expansion polymerization with catalyst 4 and formation of macrocyclic polyenes.
Figure 4: Comparison of r.m.s. radii of linear (blue) and cyclic (orange) poly(phenylacetylene) samples reported in Table 1 in dimethylacetamide with 0.05 M LiCl over a wide range of molecular masses.
Figure 5: Mark–Houwink plot that compares intrinsic viscosities (η) over a range of molecular masses for the linear and cyclic polyphenylacetylene samples reported in Table 1 in THF at 35 °C.
Figure 6: GPC traces of partially hydrogenated cyclic and linear poly(phenylacetylene) samples after ozonolysis for 30 seconds (orange) and 16 minutes (grey).
Figure 7: GPC traces that compare fully hydrogenated cyclic poly(styrene) samples (cyclic PS) with well-defined linear poly(styrene) (linear PS) standards.

Similar content being viewed by others

References

  1. Jia, Z. & Monteiro, M. J. Cyclic polymers: methods and strategies. J. Polym. Sci. A 50, 2085–2097 (2012).

    Article  CAS  Google Scholar 

  2. Tezuka, Y. Topological Polymer Chemistry: Progress of Cyclic Polymers in Syntheses, Properties and Functions (World Scientific Publishing Company, 2012).

    Google Scholar 

  3. Garcia Bernal, J. M., Tirado, M. M., Freire, J. J. & Garcia de la Torre, J. Monte Carlo calculation of hydrodynamic properties of linear and cyclic polymers in good solvents. Macromolecules 24, 593–598 (1991).

    Article  CAS  Google Scholar 

  4. Orrah, D. J., Semlyen, J. A. & Ross-Murphy, S. B. Studies of cyclic and linear poly(dimethylsiloxanes): 28. Viscosities and densities of ring and chain poly(dimethylsiloxane) blends. Polymer 29, 1455–1458 (1988).

    Article  CAS  Google Scholar 

  5. Bannister, D. J. & Semlyen, J. A. Studies of cyclic and linear poly(dimethyl siloxanes): 6. Effect of heat. Polymer 22, 377–381 (1981).

    Article  CAS  Google Scholar 

  6. Clarson, S. J., Dodgson, K. & Semlyen, J. A. Studies of cyclic and linear poly(dimethylsiloxanes): 19. Glass-transition temperatures and crystallization behavior. Polymer 26, 930–934 (1985).

    Article  CAS  Google Scholar 

  7. Griffiths, P. C., Stilbs, P., Yu, G. E. & Booth, C. Role of molecular architecture in polymer diffusion: a PGSE–NMR study of linear and cyclic poly(ethylene oxide). J. Phys. Chem. 99, 16752–16756 (1995).

    Article  CAS  Google Scholar 

  8. Santangelo, P. G., Roland, C. M., Chang, T., Cho, D. & Roovers, J. Dynamics near the glass temperature of low molecular weight cyclic polystyrene. Macromolecules 34, 9002–9005 (2001).

    Article  CAS  Google Scholar 

  9. Patel, A., Cosgrove, T. & Semlyen, J. A. Studies of cyclic and linear poly(dimethylsiloxanes): 30. Adsorption studies on silica in solution. Polymer 32, 1313–1317 (1991).

    Article  CAS  Google Scholar 

  10. Flory, P. J. & Semlyen, J. A. Macrocyclization equilibrium constants and the statistical configuration of poly(dimethylsiloxane) chains. J. Am. Chem. Soc. 88, 3209–3212 (1966).

    Article  CAS  Google Scholar 

  11. Pasini, D. The click reaction as an efficient tool for the construction of macrocyclic structures. Molecules 18, 9512–9530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pangilinan, K. & Advincula, R. Cyclic polymers and catenanes by atom transfer radical polymerization (ATRP). Polym. Int. 63, 803–813 (2014).

    Article  CAS  Google Scholar 

  13. Kricheldorf, H. R. Cyclic polymers: synthetic strategies and physical properties. J. Polym. Sci. A 48, 251–284 (2010).

    Article  CAS  Google Scholar 

  14. Kapnistos, M. et al. Unexpected power-law stress relaxation of entangled ring polymers. Nature Mater. 7, 997–1002 (2008).

    Article  CAS  Google Scholar 

  15. Laurent, B. A. & Grayson, S. M. Synthetic approaches for the preparation of cyclic polymers. Chem. Soc. Rev. 2009, 2202–2213 (2009).

    Article  Google Scholar 

  16. Ishizu, K. K. H. Novel synthesis and characterization of cyclic polystyrenes. Polymer 37, 1487–1492 (1996).

    Article  CAS  Google Scholar 

  17. Hoskins, J. N. & Grayson, S. M. Cyclic polyesters: synthetic approaches and potential applications. Polym. Chem. 2, 289–299 (2011).

    Article  CAS  Google Scholar 

  18. Shin, E. J. et al. Crystallization of cyclic polymers: synthesis and crystallization behavior of high molecular weight cyclic poly(ε-caprolactone)s. Macromolecules 44, 2773–2779 (2011).

    Article  CAS  Google Scholar 

  19. Hans, R. & Kricheldorf, S.-R. L. Polylactones. 35. Macrocyclic and stereoselective polymerization of β-D,L-butyrolactone with cyclic dibutyltin initiators. Macromolecules 28, 6718–6725 (1995).

    Article  Google Scholar 

  20. Brown, H. A. & Waymouth, R. M. Zwitterionic ring-opening polymerization for the synthesis of high molecular weight cyclic polymers. Acc. Chem. Res. 46, 2585–2596 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Brown, H. A., Chang, Y. A. & Waymouth, R. M. Zwitterionic polymerization to generate high molecular weight cyclic poly(carbosiloxane)s. J. Am. Chem. Soc. 135, 18738–18741 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Asenjo-Sanz, I., Veloso, A., Miranda, J. I., Pomposo, J. A. & Barroso-Bujans, F. Zwitterionic polymerization of glycidyl monomers to cyclic polyethers with B(C6F5)3 . Polym. Chem. 5, 6905–6908 (2014).

    Article  CAS  Google Scholar 

  23. Bielawski, C. W., Benitez, D. & Grubbs, R. H. An ‘endless’ route to cyclic polymers. Science 297, 2041–2044 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Xia, Y. et al. Ring-expansion metathesis polymerization: catalyst-dependent polymerization profiles. J. Am. Chem. Soc. 131, 2670–2677 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kricheldorf, H. R., Stricker, A. & Gomurashvili, Z. Polymers of carbonic acid, 30 ring-expansion polymerization of trimethylene carbonate (TMC, 1,3-dioxanone-2) with dibutyltin succinate or adipate. Macromol. Chem. Phys. 202, 413–420 (2001).

    Article  CAS  Google Scholar 

  26. Bielawski, C. W., Benitez, D. & Grubbs, R. H. Synthesis of cyclic polybutadiene via ring-opening metathesis polymerization: the importance of removing trace linear contaminants. J. Am. Chem. Soc. 125, 8424–8425 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Nakao, K. et al. Giant macrocycles composed of thiophene, acetylene, and ethylene building blocks. J. Am. Chem. Soc. 128, 16740–16747 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Dutta, T. et al. Synthesis and self-assembly of triphenylene-containing conjugated macrocycles. RSC Adv. 3, 6008–6015 (2013).

    Article  CAS  Google Scholar 

  29. Iyoda, M., Yamakawa, J. & Rahman, M. J. Conjugated macrocycles: concepts and applications. Angew. Chem. Int. Ed. 50, 10522–10553 (2011).

    Article  CAS  Google Scholar 

  30. Semlyen, J. A. Cyclic Polymers 2nd edn (Kluwer Academic Publishers, 2000).

    Google Scholar 

  31. O'Reilly, M. E. & Veige, A. S. Trianionic pincer and pincer-type metal complexes and catalysts. Chem. Soc. Rev. 2014, 6325–6369 (2014).

    Article  Google Scholar 

  32. McGowan, K. P., O'Reilly, M. E., Ghiviriga, I., Abboud, K. A. & Veige, A. S. Compelling mechanistic data and identification of the active species in tungsten-catalyzed alkyne polymerizations: conversion of a trianionic pincer into a new tetraanionic pincer-type ligand. Chem. Sci. 2013, 1145–1155 (2013).

    Article  Google Scholar 

  33. Kuppuswamy, S., Peloquin, A. J., Ghiviriga, I., Abboud, K. A. & Veige, A. S. Synthesis and characterization of tungsten(VI) alkylidene complexes supported by an [OCO]3− trianionic pincer ligand: progress towards the [tBuOCO]W≡CC(CH3)3 fragment. Organometallics 29, 4227–4233 (2010).

    Article  CAS  Google Scholar 

  34. Boydston, A. J., Xia, Y., Kornfield, J. A., Gorodetskaya, I. A. & Grubbs, R. H. Cyclic ruthenium–alkylidene catalysts for ring-expansion metathesis polymerization. J. Am. Chem. Soc. 130, 12775–12782 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zimm, B. H. & Stockmayer, W. H. The dimensions of chain molecules containing branches and rings. J. Chem. Phys. 17, 1301–1314 (1949).

    Article  CAS  Google Scholar 

  36. Mastrorilli, P. et al. Polymerization of phenylacetylene and of p-tolylacetylene catalyzed by β-dioxygenatorhodium(I) complexes in homogeneous and heterogeneous phase. J. Mol. Catal. 178, 35–42 (2002).

    Article  CAS  Google Scholar 

  37. Trhlíková, O., Zedník, J., Balcar, H., Brus, J. & Sedláček, J. [Rh(cycloolefin)(acac)] complexes as catalysts of polymerization of aryl- and alkylacetylenes: influence of cycloolefin ligand and reaction conditions. J. Mol. Catal. A 378, 57–66 (2013).

    Article  Google Scholar 

  38. Roovers, J. Dilute-solution properties of ring polystyrenes. J. Polym. Sci. B 23, 1117–1126 (1985).

    CAS  Google Scholar 

  39. Benmouna, M. & Maschke, U. in Cyclic Polymers (ed. Semlyen, J. A.) 781–782 (Kluwer Academic Publishers, 2000).

  40. Hoskins, J. N. & Grayson, S. M. Synthesis and degradation behavior of cyclic poly(ε-caprolactone). Macromolecules 42, 6406–6413 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.S.V. thanks the University of Florida (UF) for financial support of this project. This material is based on work supported by the National Science Foundation (NSF) CHE-1265993. K.A.A. thanks the UF and the NSF CHE-0821346 for funding the purchase of X-ray equipment. The authors thank B. S. Tucker and C. P. Kabb for their assistance with GPC characterization, and M. R. Hill for assistance in acquiring DLS data. B. S. Sumerlin is thanked for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.D.R. synthesized and characterized catalyst 4 and all the cyclic polyenes. C.D.R. co-wrote the paper. H.L. hydrogenated the polymers, characterized the hydrogenated the polymers and executed the ozonolysis reactions. H.L. edited the paper. K.A.A. performed single-crystal X-ray experiments and solved the solid-state structure for complex 4. K.B.W. analysed the polymer characterization data, and edited the paper. A.S.V. conceived the experiments, analysed the characterization data and co-wrote the paper.

Corresponding author

Correspondence to Adam S. Veige.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1424 kb)

Supplementary information

Crystallographic data for compound 4. (CIF 1150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roland, C., Li, H., Abboud, K. et al. Cyclic polymers from alkynes. Nature Chem 8, 791–796 (2016). https://doi.org/10.1038/nchem.2516

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2516

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing