Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanical force regulates integrin turnover in Drosophila in vivo

Abstract

Regulated assembly and disassembly, or turnover, of integrin-mediated cell–extracellular matrix (ECM) adhesions is essential for dynamic cell movements and long-term tissue maintenance. For example, in Drosophila, misregulation of integrin turnover disrupts muscle–tendon attachment at myotendinous junctions (MTJs). We demonstrate that mechanical force, which modulates integrin activity, also regulates integrin and intracellular adhesion complex (IAC) turnover in vivo. Using conditional mutants to alter the tensile force on MTJs, we found that the proportion of IAC components undergoing turnover inversely correlated with the force applied on MTJs. This effect was disrupted by point mutations in β-integrin that interfere with ECM-induced conformational changes and activation of β-integrin or integrin-mediated cytoplasmic signalling. These mutants also disrupted integrin dynamics at MTJs during larval development. Together, these data suggest that specific β-integrin-mediated signals regulate adhesion turnover in response to tension during tissue formation. We propose that integrin–ECM adhesive stability is continuously controlled by force in vivo through integrin-dependent auto-regulatory feedback mechanisms so that tissues can quickly adapt to and withstand mechanical stresses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effects of BrkdJ29 and parats2 temperature-sensitive mutations on muscle contraction.
Figure 2: Force regulates integrin adhesion complex dynamics at Drosophila MTJs.
Figure 3: Mutant analyses reveal regulatory sites in integrin that regulate turnover in response to elevated tensile force.
Figure 4: Mutant analyses reveal regulatory sites in integrin that regulate turnover in response to reduced tensile force.
Figure 5: Outside-in integrin activation and signalling regulate integrin turnover dynamics at MTJs throughout development.

Similar content being viewed by others

References

  1. Yuan, L., Fairchild, M. J., Perkins, A. D. & Tanentzapf, G. Analysis of integrin turnover in fly myotendinous junctions. J. Cell Sci. 123, 939–946 (2010).

    Article  CAS  Google Scholar 

  2. Gardel, M. L., Schneider, I. C., Aratyn-Schaus, Y. & Waterman, C. M. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol. 26, 315–333 (2010).

    Article  CAS  Google Scholar 

  3. Papusheva, E. & Heisenberg, C. P. Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis. EMBO J. 29, 2753–2768 (2010).

    Article  CAS  Google Scholar 

  4. Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010).

    Article  CAS  Google Scholar 

  5. Ballestrem, C., Hinz, B., Imhof, B. A. & Wehrle-Haller, B. Marching at the front and dragging behind: differential αV β3-integrin turnover regulates focal adhesion behavior. J. Cell Biol. 155, 1319–1332 (2001).

    Article  CAS  Google Scholar 

  6. Wolfenson, H., Bershadsky, A., Henis, Y. I. & Geiger, B. Actomyosin-generated tension controls the molecular kinetics of focal adhesions. J. Cell Sci. 124, 1425–1432 (2011).

    Article  CAS  Google Scholar 

  7. Schweitzer, R., Zelzer, E. & Volk, T. Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development 137, 2807–2817 (2010).

    Article  CAS  Google Scholar 

  8. Yee, G. H. & Hynes, R. O. A novel, tissue-specific integrin subunit, βν, expressed in the midgut of Drosophila melanogaster. Development 118, 845–858 (1993).

    CAS  PubMed  Google Scholar 

  9. Leptin, M., Bogaert, T., Lehmann, R. & Wilcox, M. The function of PS integrins during Drosophila embryogenesis. Cell 56, 401–408 (1989).

    Article  CAS  Google Scholar 

  10. Pines, M., Fairchild, M. J. & Tanentzapf, G. Distinct regulatory mechanisms control integrin adhesive processes during tissue morphogenesis. Dev. Dyn. 240, 36–51 (2011).

    Article  CAS  Google Scholar 

  11. Hudson, A. M., Petrella, L. N., Tanaka, A. J. & Cooley, L. Mononuclear muscle cells in Drosophila ovaries revealed by GFP protein traps. Dev. Biol. 314, 329–340 (2008).

    Article  CAS  Google Scholar 

  12. Torgler, C. N. et al. Tensin stabilizes integrin adhesive contacts in Drosophila. Dev. Cell 6, 357–369 (2004).

    Article  CAS  Google Scholar 

  13. Montana, E. S. & Littleton, J. T. Characterization of a hypercontraction-induced myopathy in Drosophila caused by mutations in Mhc. J. Cell Biol. 164, 1045–1054 (2004).

    Article  CAS  Google Scholar 

  14. Sanyal, S., Basole, A. & Krishnan, K. S. Phenotypic interaction between temperature-sensitive paralytic mutants comatose and paralytic suggests a role for N-ethylmaleimide-sensitive fusion factor in synaptic vesicle cycling in Drosophila. J. Neurosci. 19, RC47, 1–5 (1999).

    Article  Google Scholar 

  15. Ezratty, E. J., Bertaux, C., Marcantonio, E. E. & Gundersen, G. G. Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J. Cell Biol. 187, 733–747 (2009).

    Article  CAS  Google Scholar 

  16. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  Google Scholar 

  17. Askari, J. A., Buckley, P. A., Mould, A. P. & Humphries, M. J. Linking integrin conformation to function. J. Cell Sci. 122, 165–170 (2009).

    Article  CAS  Google Scholar 

  18. Legate, K. R. & Fassler, R. Mechanisms that regulate adaptor binding to β-integrin cytoplasmic tails. J. Cell Sci. 122, 187–198 (2009).

    Article  CAS  Google Scholar 

  19. Bajt, M. L. & Loftus, J. C. Mutation of a ligand binding domain of β3 integrin. Integral role of oxygenated residues in α IIb β3 (GPIIb-IIIa) receptor function. J. Biol. Chem. 269, 20913–20919 (1994).

    CAS  PubMed  Google Scholar 

  20. Chen, J., Maeda, T., Sekiguchi, K. & Sheppard, D. Distinct structural requirements for interaction of the integrins α5β1, αvβ5, and αvβ6 with the central cell binding domain in fibronectin. Cell Adhesion Commun. 4, 237–250 (1996).

    Article  CAS  Google Scholar 

  21. Jannuzi, A. L., Bunch, T. A., West, R. F. & Brower, D. L. Identification of integrin β subunit mutations that alter heterodimer function in situ. Mol. Biol. Cell 15, 3829–3840 (2004).

    Article  CAS  Google Scholar 

  22. Anthis, N. J. et al. Integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation. J. Biol. Chem. 1–23 (2009).

  23. Datta, A., Huber, F. & Boettiger, D. Phosphorylation of β3 integrin controls ligand binding strength. J. Biol. Chem. 277, 3943–3949 (2002).

    Article  CAS  Google Scholar 

  24. Calderwood, D. A. et al. The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem. 277, 21749–21758 (2002).

    Article  CAS  Google Scholar 

  25. Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science 302, 103–106 (2003).

    Article  CAS  Google Scholar 

  26. Wegener, K. L. et al. Structural basis of integrin activation by talin. Cell 128, 171–182 (2007).

    Article  CAS  Google Scholar 

  27. Tanentzapf, G. & Brown, N. H. An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton. Nat. Cell Biol. 8, 601–606 (2006).

    Article  CAS  Google Scholar 

  28. Tanentzapf, G., Martin-Bermudo, M. D., Hicks, M. S. & Brown, N. H. Multiplefactors contribute to integrin-talin interactions in vivo. J. Cell Sci. 119, 1632–1644 (2006).

    Article  CAS  Google Scholar 

  29. Ellis, S. J., Pines, M., Fairchild, M. J. & Tanentzapf, G. In vivo functional analysis reveals specific roles for the integrin-binding sites of talin. J. Cell Sci. 124, 1844–1856 (2011).

    Article  CAS  Google Scholar 

  30. Harburger, D. S., Bouaouina, M. & Calderwood, D. A. Kindlin-1 and -2 directly bind the C-terminal region of β integrin cytoplasmic tails and exert integrin-specific activation effects. J. Biol. Chem. 284, 11485–11497 (2009).

    Article  CAS  Google Scholar 

  31. Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fässler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med. 14, 325–330 (2008).

    Article  CAS  Google Scholar 

  32. Demontis, F. & Perrimon, N. Integration of Insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila. Development 136, 983–993 (2009).

    Article  CAS  Google Scholar 

  33. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes: The Art of Scientific Computing 3rd edn (Cambridge Univ. Press, 2007).

    Google Scholar 

  34. Wasserman, L. All of Statistics: A Concise Course in Statistical Inference Ch. 9 (Springer, 2004).

    Book  Google Scholar 

  35. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman and Hall/CRC, 1994).

    Google Scholar 

  36. Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J. & Wu, C. F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J. Comp. Physiol. A 175, 179–191 (1994).

    Article  CAS  Google Scholar 

  37. Franco-Cea, A. et al. Distinct developmental roles for direct and indirect talin-mediated linkage to actin. Dev. Biol. 345, 64–77 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Littleton (MIT, USA) and F. Schöck (McGill University, Canada) for flies, and D. Moerman and members of the laboratory for helpful discussions and comments on the manuscript. S.J.E. holds an NSERC Alexander Graham Bell Canada Graduate Scholarship. D.C. is financially supported through an NSERC discovery grant. G.T. is financially supported through NSERC discovery grant 356502 and Canadian Institutes of Health Research operating grant 89835. G.T. is a CIHR New Investigator and Michael Smith Foundation for Health Research Scholar.

Author information

Authors and Affiliations

Authors

Contributions

G.T. conceived, designed and supervised the project and participated in data analysis. M.P. carried out most of the genetics crosses, FRAP experiments and data analysis. S.J.E. performed genetic crosses, FRAP experiments and analysed data. L.Y. optimized the conditions and protocols for using the Brkd and para mutants. M.K. performed the force transducer experiments. A.M. and S.C. performed FRAP experiments and analysed data. A.M. carried out the stainings on larval flat preparations. M.P., S.J.E., A.M. and S.C. recorded movies for analysis. R.D and D.C. performed the mathematical modeling and data analysis. G.T., M.P., R.D. and S.J.E. wrote and revised the manuscript.

Corresponding author

Correspondence to Guy Tanentzapf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1477 kb)

Supplementary Table 1

Supplementary Information (XLSX 18 kb)

Supplementary Movie 1

Supplementary Information (MOV 15173 kb)

Supplementary Movie 2

Supplementary Information (AVI 8632 kb)

Supplementary Movie 3

Supplementary Information (AVI 9800 kb)

Supplementary Movie 4

Supplementary Information (AVI 8209 kb)

Supplementary Movie 5

Supplementary Information (AVI 15430 kb)

Supplementary Movie 6

Supplementary Information (AVI 12255 kb)

Supplementary Movie 7

Supplementary Information (AVI 11134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pines, M., Das, R., Ellis, S. et al. Mechanical force regulates integrin turnover in Drosophila in vivo. Nat Cell Biol 14, 935–943 (2012). https://doi.org/10.1038/ncb2555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2555

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing