Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Programming human pluripotent stem cells into white and brown adipocytes

Abstract

The utility of human pluripotent stem cells is dependent on efficient differentiation protocols that convert these cells into relevant adult cell types. Here we report the robust and efficient differentiation of human pluripotent stem cells into white or brown adipocytes. We found that inducible expression of PPARG2 alone or combined with CEBPB and/or PRDM16 in mesenchymal progenitor cells derived from pluripotent stem cells programmed their development towards a white or brown adipocyte cell fate with efficiencies of 85%–90%. These adipocytes retained their identity independent of transgene expression, could be maintained in culture for several weeks, expressed mature markers and had mature functional properties such as lipid catabolism and insulin-responsiveness. When transplanted into mice, the programmed cells gave rise to ectopic fat pads with the morphological and functional characteristics of white or brown adipose tissue. These results indicate that the cells could be used to faithfully model human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental scheme and characterization of hPSC-derived MPCs.
Figure 2: Programming hPSC-derived MPCs with PPARG2, PPARG2–CEBPB or PPARG2–CEBPB–PRDM16 generates white and brown adipocytes.
Figure 3: Programmed adipocytes exhibit a mature white or brown adipocyte gene expression profile.
Figure 4: Global transcriptional analysis confirms the identity of programmed hPSC-derived white and brown adipocytes.
Figure 5: Programmed hPSC-derived white adipocytes exhibit mature functional properties.
Figure 6: Programmed hPSC-derived brown adipocytes demonstrate mature functional properties.
Figure 7: Generation of functional hPSC-derived brown and white adipose tissue in vivo.

Similar content being viewed by others

References

  1. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  2. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  3. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  Google Scholar 

  4. Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  Google Scholar 

  5. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    Article  CAS  Google Scholar 

  6. Green, H. & Kehinde, O. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5, 19–27 (1975).

    Article  CAS  Google Scholar 

  7. Farmer, S. R. Transcriptional control of adipocyte formation. Cell Metab. 4, 263–273 (2006).

    Article  CAS  Google Scholar 

  8. Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I. & Spiegelman, B. M. mPPAR γ2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224–1234 (1994).

    Article  CAS  Google Scholar 

  9. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPAR γ2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).

    Article  CAS  Google Scholar 

  10. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  Google Scholar 

  11. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. New Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  Google Scholar 

  12. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  Google Scholar 

  13. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. New Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  Google Scholar 

  14. Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007).

    Article  CAS  Google Scholar 

  15. Kajimura, S. et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex. Nature 460, 1154–1158 (2009).

    Article  CAS  Google Scholar 

  16. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  Google Scholar 

  17. Lazarus, H. M., Haynesworth, S. E., Gerson, S. L., Rosenthal, N. S. & Caplan, A. I. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 16, 557–564 (1995).

    CAS  PubMed  Google Scholar 

  18. Zuk, P. A. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228 (2001).

    Article  CAS  Google Scholar 

  19. Barberi, T. & Studer, L. Mesenchymal cells. Methods Enzymol. 418, 194–208 (2006).

    Article  CAS  Google Scholar 

  20. Dani, C. Embryonic stem cell-derived adipogenesis. Cells Tissues Organs 165, 173–180 (1999).

    Article  CAS  Google Scholar 

  21. Xiong, C. et al. Derivation of adipocytes from human embryonic stem cells. Stem Cells Dev. 14, 671–675 (2005).

    Article  CAS  Google Scholar 

  22. van Harmelen, V. et al. Differential lipolytic regulation in human embryonic stem cell-derived adipocytes. Obesity (Silver Spring) 15, 846–852 (2007).

    Article  CAS  Google Scholar 

  23. Hannan, N. R. & Wolvetang, E. J. Adipocyte differentiation in human embryonic stem cells transduced with Oct4 shRNA lentivirus. Stem Cells Dev. 18, 653–660 (2008).

    Article  Google Scholar 

  24. Barberi, T., Willis, L. M., Socci, N. D. & Studer, L. Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med. 2, e161 (2005).

    Article  Google Scholar 

  25. Trivedi, P. & Hematti, P. Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp. Hematol. 36, 350–359 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630 (2010).

    Article  CAS  Google Scholar 

  27. Olivier, E. N., Rybicki, A. C. & Bouhassira, E. E. Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells. Stem Cells 24, 1914–1922 (2006).

    Article  CAS  Google Scholar 

  28. Sen, A. et al. Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J. Cell Biochem. 312–319 (2001).

    Article  CAS  Google Scholar 

  29. Tashiro, K. et al. Efficient adenovirus vector-mediated PPAR γ gene transfer into mouse embryoid bodies promotes adipocyte differentiation. J. Gene Med. 10, 498–507 (2008).

    Article  CAS  Google Scholar 

  30. Bermingham, J. R. Jr et al. Identification of genes that are downregulated in the absence of the POU domain transcription factor pou3f1 (Oct-6, Tst-1, SCIP) in sciatic nerve. J. Neurosci. 22, 10217–10231 (2002).

    Article  CAS  Google Scholar 

  31. Rosen, E. D. et al. PPAR γ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611–617 (1999).

    Article  CAS  Google Scholar 

  32. Maherali, N. et al. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3, 340–345 (2008).

    Article  CAS  Google Scholar 

  33. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

    Article  CAS  Google Scholar 

  34. Altiok, S., Xu, M. & Spiegelman, B. M. PPAR γ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes Dev. 11, 1987–1998 (1997).

    Article  CAS  Google Scholar 

  35. Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885–896 (2006).

    Article  CAS  Google Scholar 

  36. Svensson, P. A. et al. Gene expression in human brown adipose tissue. Int. J. Mol. Med. 27, 227–232 (2011).

    Article  CAS  Google Scholar 

  37. Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarraysapplied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  Google Scholar 

  38. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  Google Scholar 

  39. Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  Google Scholar 

  40. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  Google Scholar 

  41. de Jesus, L. A. et al. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J. Clin. Invest. 108, 1379–1385 (2001).

    Article  CAS  Google Scholar 

  42. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  Google Scholar 

  43. Simpson, F. & Whitehead, J. P. Adiponectin—it’s all about the modifications. Int. J. Biochem. Cell Biol. 42, 785–788 (2010).

    Article  CAS  Google Scholar 

  44. Rhee, E. P. et al. Metabolite profiling identifies markers of uremia. J. Am. Soc. Nephrol. 21, 1041–1051 (2010).

    Article  CAS  Google Scholar 

  45. Jiao, P. et al. FFA-induced adipocyte inflammation and insulin resistance: involvement of ER stress and IKK β pathways. Obesity (Silver Spring) 19, 483–491 (2011).

    Article  CAS  Google Scholar 

  46. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  CAS  Google Scholar 

  47. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. New Engl. J. Med. 360, 1500–1508 (2009).

    Article  CAS  Google Scholar 

  48. Stadtfeld, M., Brennand, K. & Hochedlinger, K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr. Biol. 18, 890–894 (2008).

    Article  CAS  Google Scholar 

  49. Tiscornia, G., Singer, O. & Verma, I. M. Production and purification of lentiviral vectors. Nat. Protoc. 1, 241–245 (2006).

    Article  CAS  Google Scholar 

  50. Maherali, N. et al. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3, 340–345 (2008).

    Article  CAS  Google Scholar 

  51. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  Google Scholar 

  52. Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  Google Scholar 

  53. Stadtfeld, M., Maherali, N., Breault, D. T. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2, 230–240 (2008).

    Article  CAS  Google Scholar 

  54. al Yacoub, N., Romanowska, M., Haritonova, N. & Foerster, J. Optimized production and concentration of lentiviral vectors containing large inserts. J. Gene Med. 9, 579–584 (2007).

    Article  CAS  Google Scholar 

  55. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article  Google Scholar 

  56. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  Google Scholar 

  57. Rhee, E. P. et al. Metabolite profiling identifies markers of uremia. J. Am. Soc. Nephrol. 21, 1041–1051 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T. Holm, A. Foudi and E. Hanson for critical reading, insight and suggestions; M. Henderson, J. Hom, K. Hom, I. Pomerantseva, A. Tseng and K. Kulig for their technical help; L. Prickett-Rice and K. Folz-Donahue of the HSCI-CRM Flow Cytometry Core Facility; D. Lieber and V. Mootha for assistance with cellular bioenergetic measurements; and J. Truelove and R. Weissleder for assistance with PET–CT imaging. T. Ahfeldt was supported by the Roberto and Allison Mignone Fund for Stem Cell Research. This work was financially sponsored in part by the Harvard Stem Cell Institute, Hoffman-La Roche and the Stowers Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A. Cowan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1427 kb)

Supplementary Table 1

Supplementary Information (XLSX 320 kb)

Supplementary Table 2

Supplementary Information (XLSX 7313 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahfeldt, T., Schinzel, R., Lee, YK. et al. Programming human pluripotent stem cells into white and brown adipocytes. Nat Cell Biol 14, 209–219 (2012). https://doi.org/10.1038/ncb2411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2411

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing