Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells

Abstract

Reductional chromosome segregation in germ cells, where sister chromatids are pulled to the same pole, accompanies the protection of cohesin at centromeres from separase cleavage. Here, we show that mammalian shugoshin Sgo2 is expressed in germ cells and is solely responsible for the centromeric localization of PP2A and the protection of cohesin Rec8 in oocytes, proving conservation of the mechanism from yeast to mammals. However, this role of Sgo2 contrasts with its mitotic role in protecting centromeric cohesin only from prophase dissociation, but never from anaphase cleavage. We demonstrate that, in somatic cells, shugoshin colocalizes with cohesin in prophase or prometaphase, but their localizations become separate when centromeres are pulled oppositely at metaphase. Remarkably, if tension is artificially removed from the centromeres at the metaphase–anaphase transition, cohesin at the centromeres can be protected from separase cleavage even in somatic cells, as in germ cells. These results argue for a unified view of centromeric protection by shugoshin in mitosis and meiosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sgo2 is highly expressed in germ cells.
Figure 2: Sgo2, but not Sgo1, is required for the protection of centromeric cohesion in oocytes.
Figure 3: Inter-centromeric localization of Sgo2 and Rec8 at metaphase I and metaphase II in oocytes.
Figure 4: Sgo2 relocates towards kinetochores during metaphase II.
Figure 5: Shugoshins relocate towards kinetochores during mitotic metaphase.
Figure 6: The tension on bi-oriented mitotic chromosomes displaces shugoshins from cohesin sites within the centromeres.
Figure 7: Cohesin can be protected at the centromeres from separase cleavage, even in somatic cells if tension does not act on the centromeres.
Figure 8: Schematic representation of a unified view of centromeric protection of cohesin in mitosis and meiosis.

Similar content being viewed by others

References

  1. Nasmyth, K., Peters, J. M. & Uhlmann, F. Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288, 1379–1385 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Petronczki, M., Siomos, M. F. & Nasmyth, K. Un ménage à quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423–440 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Watanabe, Y. Shugoshin: guardian spirit at the centromere. Curr. Opin. Cell Biol. 17, 590–595 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Kitajima, T. S., Kawashima, S. A. & Watanabe, Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427, 510–517 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Rabitsch, K. P. et al. Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr. Biol. 14, 287–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Marston, A. L., Tham, W. H., Shah, H. & Amon, A. A genome-wide screen identifies genes required for centromeric cohesion. Science 303, 1367–1370 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Kitajima, T. S. et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441, 46–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Riedel, C. G. et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441, 53–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Losada, A. & Hirano, T. Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev. 19, 1269–1287 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Salic, A., Waters, J. C. & Mitchison, T. J. Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118, 567–578 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Hauf, S. et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol. 3, e69 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  12. McGuinness, B. E., Hirota, T., Kudo, N. R., Peters, J.-M. & Nasmyth, K. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol. 3, e86 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 280–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Page, S. L. & Hawley, R. S. Chromosome choreography: the meiotic ballet. Science 301, 785–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Marston, A. L. & Amon, A. Meiosis: cell-cycle controls shuffle and deal. Nature Rev. Mol. Cell Biol. 5, 983–997 (2004).

    Article  CAS  Google Scholar 

  16. Revenkova, E. & Jessberger, R. Keeping sister chromatids together: cohesins in meiosis. Reproduction 130, 783–790 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Huang, H. et al. Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. J. Cell Biol. 177, 413–424 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, J., Iwai, T., Yokota, T. & Yamashita, M. Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. J. Cell Sci. 116, 2781–2790 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Xu, H., Beasley, M. D., Warren, W. D., van der Horst, G. T. & McKay, M. J. Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev. Cell 8, 949–961 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, J. et al. Loss of Rec8 from chromosome arm and centromere region is required for homologous chromosome separation and sister chromatid separation, respectively, in mammalian meiosis. Cell Cycle 5, 1448–1455 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Kudo, N. R. et al. Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell 126, 135–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Mailhes, J. B., Hilliard, C., Fuseler, J. W. & London, S. N. Okadaic acid, an inhibitor of protein phosphatase 1 and 2A, induces premature separation of sister chromatids during meiosis I and aneuploidy in mouse oocytes in vitro . Chromosome Res. 11, 619–631 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Katis, V. L., Galova, M., Rabitsch, K. P., Gregan, J. & Nasmyth, K. Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr. Biol. 14, 560–572 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Clarke, A. S., Tang, T. T., Ooi, D. L. & Orr-Weaver, T. L. POLO kinase regulates the Drosophila centromere cohesion protein MEI-S332. Dev. Cell 8, 53–64 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Gómez, R. et al. Mammalian SGO2 appears at the inner centromere domain and redistributes depending on tension across centromeres during meiosis II and mitosis. EMBO Rep. 8, 173–180 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kouznetsova, A., Lister, L., Nordenskjöld, M., Herbert, M. & Höög, C. Bi-orientation of achiasmatic chromosomes in meiosis I oocytes contributes to aneuploidy in mice. Nature Genetics 39, 966–968 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Yokobayashi, S. & Watanabe, Y. The kinetochore protein Moa1 enables cohesion-mediated monopolar attachment at meiosis I. Cell 123, 803–817 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Vaur, S. et al. Control of Shugoshin function during fission-yeast meiosis. Curr. Biol. 15, 2263–2270 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Hauf, S., Waizenegger, I. C. & Peters, J. M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293, 1320–1323 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Kueng, S. et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 127, 955–967 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Gandhi, R., Gillespie, P. J. & Hirano, T. Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr. Biol. 16, 2406–2417 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Steuerwald, N., Cohen, J., Herrera, R. J., Sandalinas, M. & Brenner, C. A. Association between spindle assembly checkpoint expression and maternal age in human oocytes. Mol. Hum. Reprod. 7, 49–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Lan, W. et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol. 14, 273–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Pouwels, J. et al. Shugoshin 1 plays a central role in kinetochore assembly and is required for kinetochore targeting of Plk1. Cell Cycle 6, 1579–1585 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Zur, A. & Brandeis, M. Securin degradation is mediated by fzy and fzr, and is required for complete chromatid separation but not for cytokinesis. EMBO J. 20, 792–801 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yalon, M., Gal, S., Segev, Y., Selig, S. & Skorecki, K. L. Sister chromatid separation at human telomeric regions. J. Cell Sci. 117, 1961–1970 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Giménez-Abián, J. F. et al. Regulated separation of sister centromeres depends on the spindle assembly checkpoint but not on the anaphase promoting complex/cyclosome. Cell Cycle 4, 1561–1575 (2005).

    Article  PubMed  Google Scholar 

  40. Eckert, C. A., Gravdahl, D. J. & Megee, P. C. The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension. Genes Dev. 21, 278–291 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brar, G. A. et al. Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. Nature 441, 532–536 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Tang, Z. et al. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev. Cell 10, 575–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Tarkowski, A. K. An air-drying method for chromosome preparations from mouse eggs. Cytogenetics 5, 394–400 (1966).

    Article  Google Scholar 

  44. Suzuki, H. et al. Human shugoshin mediates kinetochore-driven formation of kinetochore microtubules. Cell Cycle 5, 1094–1101 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161, 281–294 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kitajima, T. S., Hauf, S., Ohsugi, M., Yamamoto, T. & Watanabe, Y. Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting shugoshin localization. Curr. Biol. 15, 353–359 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Waizenegger, I., Giménez-Abián, J., Wernic, D. & Peters, J. Regulation of human separase by securin binding and autocleavage. Curr. Biol. 12, 1368–1378 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank: S. Hauf for critical reading of the manuscript; T. Hirota for personal communication; S. S. Taylor for the anti-mBub1 antibody; H. Suzuki for the anti-hSgo1 13G1 antibody; T. Hirano for the anti-Wapl antibody; and J.-M. Peters for Myc–Rad21-expressing HeLa cells. This work was supported in part by: a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to J.L. and T.S.K.; by 21st Century COE Programs to J.L., T. Miyano and M.M.; by Ground-based Research Program for Space Utilization from Japan Space Forum to K.Y. and T. Morita; and by the Toray Science Foundation and a Grant-in-Aid for Specially Promoted Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan to Y.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Watanabe.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5, S6 and Supplementary Note (PDF 544 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Kitajima, T., Tanno, Y. et al. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat Cell Biol 10, 42–52 (2008). https://doi.org/10.1038/ncb1667

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1667

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing