Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein

Abstract

We describe the dynamics of kinetochore dynein–dynactin in living Drosophila embryos and examine the effect of mutant dynein on the metaphase checkpoint. A functional conjugate of dynamitin with green fluorescent protein accumulates rapidly at prometaphase kinetochores, and subsequently migrates off kinetochores towards the poles during late prometaphase and metaphase. This behaviour is seen for several metaphase checkpoint proteins, including Rough deal (Rod). In neuroblasts, hypomorphic dynein mutants accumulate in metaphase and block the normal redistribution of Rod from kinetochores to microtubules. By transporting checkpoint proteins away from correctly attached kinetochores, dynein might contribute to shutting off the metaphase checkpoint, allowing anaphase to ensue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p50/Dmn–GFP protein co-fractionates with the dynactin complex (19S) on a sucrose density gradient.
Figure 2: Dmn–GFP dynamics in living embryos.
Figure 3: Dynein and Rod colocalize during mitosis in Drosophila neuroblasts.
Figure 4: Rod localization at metaphase is dependent on dynein function.
Figure 5: Mutant dynein accumulates on kinetochores and does not spread polewards along kinetochore microtubules in metaphase third-instar giant neuroblasts.
Figure 6: Drugs that alter microtubule assembly and dynamics block polewards migration of dynein.
Figure 7: Dynein mutant neuroblasts are delayed in metaphase and suffer mitotic defects, but do not exhibit premature sister chromatid separation.
Figure 8: Dynein mutants exhibit defects in spindle assembly that might affect chromosome behaviour and checkpoint controls.

Similar content being viewed by others

References

  1. Merdes, A., Heald, R., Samejima, K., Earnshaw, W. C. & Cleveland, D. W. Formation of spindle poles by Dynein/Dynactin-dependent transport of NuMA. J. Cell Biol. 149, 851–862 (2000).

    Article  CAS  Google Scholar 

  2. Robinson, J. T., Wojcik, E. J., Sanders, M. A., McGrail, M. & Hays, T. S. Cytoplasmic dynein is required for the nuclear attachment and migration of centrosomes during mitosis in Drosophila.. J. Cell Biol. 146, 597–608 (1999).

    Article  CAS  Google Scholar 

  3. Purohit, A., Tynan, S. H., Vallee, R. & Doxsey, S. J. Direct interaction of pericentrin with cytoplasmic dynein light intermediate chain contributes to mitotic spindle organization. J. Cell Biol. 147, 481–492 (1999).

    Article  CAS  Google Scholar 

  4. Palazzo, R. E., Vaisberg, E. A., Weiss, D. G., Kuznetsov, S. A. & Steffen, W. Dynein is required for spindle assembly in cytoplasmic extracts of Spisula solidissima oocytes. J. Cell Sci. 112, 1291–1302 (1999).

    CAS  PubMed  Google Scholar 

  5. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  CAS  Google Scholar 

  6. Merdes, A., Ramyar, K., Vechio, J. D. & Cleveland, D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447–458 (1996).

    Article  CAS  Google Scholar 

  7. Vaisberg, E. A., Koonce, M. P. & McIntosh, J. R. Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J. Cell Biol. 123, 849–858 (1993).

    Article  CAS  Google Scholar 

  8. O'Connell, C. B. & Wang, Y. L. Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol. Biol. Cell 11, 1765–1774 (2000).

    Article  CAS  Google Scholar 

  9. Heil-Chapdelaine, R. A., Tran, N. K. & Cooper, J. A. Dynein-dependent movements of the mitotic spindle in Saccharomyces cerevisiae do not require filamentous actin. Mol. Biol. Cell 11, 863–872 (2000).

    Article  CAS  Google Scholar 

  10. Adames, N. R. & Cooper, J. A. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol. 149, 863–874 (2000).

    Article  CAS  Google Scholar 

  11. Gonczy, P., Pichler, S., Kirkham, M. & Hyman, A. A. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J. Cell Biol. 147, 135–150 (1999).

    Article  CAS  Google Scholar 

  12. McGrail, M. & Hays, T. S. The microtubule motor cytoplasmic dynein is required for spindle orientation during germline cell divisions and oocyte differentiation in Drosophila. Development 124, 2409–2419 (1997).

    CAS  PubMed  Google Scholar 

  13. Li, Y. Y., Yeh, E., Hays, T. & Bloom, K. Disruption of mitotic spindle orientation in a yeast dynein mutant. Proc. Natl Acad. Sci. USA 90, 10096–10100 (1993).

    Article  CAS  Google Scholar 

  14. Carminati, J. L. & Stearns, T. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol. 138, 629–641 (1997).

    Article  CAS  Google Scholar 

  15. Steuer, E. R., Wordeman, L., Schroer, T. A. & Sheetz, M. P. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345, 266–268 (1990).

    Article  CAS  Google Scholar 

  16. Pfarr, C. M. et al. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345, 263–265 (1990).

    Article  CAS  Google Scholar 

  17. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nature Cell Biol. 2, 922–930 (2000).

    Article  CAS  Google Scholar 

  18. Savoian, M. S., Goldberg, M. L. & Rieder, C. L. The rate of poleward chromosome motion is attenuated in Drosophila zw10 and rod mutants. Nature Cell Biol. 2, 948–952 (2000).

    Article  CAS  Google Scholar 

  19. Starr, D. A., Williams, B. C., Hays, T. S. & Goldberg, M. L. ZW10 helps recruit dynactin and dynein to the kinetochore. J. Cell Biol. 142, 763–774 (1998).

    Article  CAS  Google Scholar 

  20. Chan, G. K., Jablonski, S. A., Starr, D. A., Goldberg, M. L. & Yen, T. J. Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. Nature Cell Biol. 2, 944–947 (2000).

    Article  CAS  Google Scholar 

  21. Basto, R., Gomes, R. & Karess, R. E. Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila. Nature Cell Biol. 2, 939–943 (2000).

    Article  CAS  Google Scholar 

  22. King, J. M., Hays, T. S. & Nicklas, R. B. Dynein is a transient kinetochore component whose binding is regulated by microtubule attachment, not tension. J. Cell Biol. 151, 739–748 (2000).

    Article  CAS  Google Scholar 

  23. Banks, J. D. & Heald, R. Chromosome movement: Dynein-out at the kinetochore. Curr. Biol. 11, R128–R131 (2001).

    Article  CAS  Google Scholar 

  24. Shah, J. V. & Cleveland, D. W. Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell 103, 997–1000 (2000).

    Article  CAS  Google Scholar 

  25. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633 (1996).

    Article  CAS  Google Scholar 

  26. Karki, S. & Holzbaur, E. L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).

    Article  CAS  Google Scholar 

  27. Scaërou, F. et al. The ZW10 and Rough Deal checkpoint proteins function together in a large, evolutionarily conserved complex targeted to the kinetochore. J. Cell Sci. (in the press).

  28. Scaërou, F. et al. The rough deal protein is a new kinetochore component required for accurate chromosome segregation in Drosophila. J. Cell Sci. 112, 3757–3768 (1999).

    PubMed  Google Scholar 

  29. Williams, B. C., Gatti, M. & Goldberg, M. L. Bipolar spindle attachments affect redistributions of ZW10, a Drosophila centromere/kinetochore component required for accurate chromosome segregation. J. Cell Biol. 134, 1127–1140 (1996).

    Article  CAS  Google Scholar 

  30. Basu, J. et al. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J. Cell Biol. 146, 13–28 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Howell, B. J., Hoffman, D. B., Fang, G., Murray, A. W. & Salmon, E. D. Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J. Cell Biol. 150, 1233–1250 (2000).

    Article  CAS  Google Scholar 

  32. Gorbsky, G. J., Chen, R. H. & Murray, A. W. Microinjection of antibody to Mad2 protein into mammalian cells in mitosis induces premature anaphase. J. Cell Biol. 141, 1193–1205 (1998).

    Article  CAS  Google Scholar 

  33. Gardner, R. D. & Burke, D. J. The spindle checkpoint: two transitions, two pathways. Trends Cell Biol. 10, 154–158 (2000).

    Article  CAS  Google Scholar 

  34. Gepner, J. et al. Cytoplasmic dynein function is essential in Drosophila melanogaster. Genetics 142, 865–878 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gonzalez, C. & Glover, D. M. in The Cell Cycle: A Practical Approach (eds Fantes, P. & Brooks, R.) 143–175 (IRL, Oxford, 1994).

    Google Scholar 

  36. Waterman-Storer, C. M. & Holzbaur, E. L. The product of the Drosophila gene, Glued, is the functional homologue of the p150Glued component of the vertebrate dynactin complex. J. Biol. Chem. 271, 1153–1159 (1996).

    Article  CAS  Google Scholar 

  37. McGrail, M. et al. Regulation of cytoplasmic dynein function in vivo by the Drosophila Glued complex. J. Cell Biol. 131, 411–425 (1995).

    Article  CAS  Google Scholar 

  38. Theurkauf, W. E. & Heck, M. M. Identification and characterization of mitotic mutations in Drosophila. Methods Cell Biol. 61, 317–346 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with all members of the Hays laboratory, and thank E. D. Salmon for communicating results before publication. This work was supported by grants to T.H. and E.W. from the National Institutes of Health (GM44757 and GM19123 respectively) and the American Heart Association (96002200). R.K., R.B. and F.S. performed this work at the UPR 2420 Centre de Génétique Moléculaire of the CNRS, associated with the Université Pierre et Marie Curie. R.K. was supported in part by grants from the CNRS and from the Association Pour la Recherche sur le Cancer (France). R.B. was supported by grants BD/11488/97 and P/BIA/111055/1998 from FCT, Portugal. F.S. was supported by Le Ministère Nationale de l'Enseignement Supérieur et de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Wojcik.

Supplementary information

Figure S1

Dynein mutant neuroblasts retain a checkpoint that prevents pre-mature degradation of cyclin B. (PDF 76 kb)

Movie 1

Time-lapse recordings of transformed syncytial were obtained by confocal microscopy, with 5 second intervals between frames. (MOV 2135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojcik, E., Basto, R., Serr, M. et al. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nat Cell Biol 3, 1001–1007 (2001). https://doi.org/10.1038/ncb1101-1001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1101-1001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing