Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle

Abstract

The analysis of volatiles in magmatic systems can be used to constrain the volatile content of the Earth's mantle and the influence that magmatic degassing has on the chemistry of the oceans and the atmosphere. But most volatile elements have very low solubilities in magmas at atmospheric pressure, and therefore virtually all erupted lavas are degassed and do not retain their primary volatile signatures. Here we report the undersaturated pre-eruptive volatile content for a suite of mid-ocean-ridge basalts from the Siqueiros intra-transform spreading centre. The undersaturation leads to correlations between volatiles and refractory trace elements that provide new constraints on volatile abundances and their behaviour in the upper mantle. Our data generate improved limits on the abundances of carbon dioxide, water, fluorine, sulphur and chlorine in the source of normal mid-ocean-ridge basalt. The incompatible behaviour of carbon dioxide, together with the CO2/Nb and CO2/Cl ratios, permit estimates of primitive carbon dioxide and chlorine to be made for degassed and chlorine-contaminated mid-ocean-ridge basalt magmas, and hence constrain degassing and contamination histories of mid-ocean ridges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pressure for CO2–H2O saturation, and comparison with pressure of sample collection.
Figure 2: CO2 contents versus Nb abundances in Siqueiros and other MORB samples.
Figure 3: Evaluation of primary Cl content in Siqueiros and other MORB samples.
Figure 4: Relationship between sulphur fugacity fs2 and dissolved sulphur in basaltic liquids along the sulphide saturation surface.

Similar content being viewed by others

References

  1. Gaetani, G. A. & Grove, T. L. The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol. 131, 323–346 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Hirth, G. & Kohlstedt, D. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Jung, H. Y. & Karato, S. Water-induced fabric transitions in olivine. Science 293, 1460–1463 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Hauri, E. H. SIMS investigation of volatiles in volcanic glasses, 2: Abundances and isotopes in Hawaiian melt inclusions. Chem. Geol. (in the press)

  5. Kingsley, R. H. & Schilling, J.-G. Carbon in Mid-Atlantic Ridge basalt glasses from 28°N to 63°N: Evidence for a carbon-enriched Azores mantle plume. Earth Planet. Sci. Lett. 129, 31–53 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Simons, K., Dixon, J. E., Schilling, J.-G., Kingsley, R. & Poreda, R. Volatiles in basaltic glasses from the Easter-Salas y Gomez seamount chain and Easter microplate: implications for geochemical cycling of volatile elements. Geochem. Geophys. Geosyst. (in the press)

  7. Javoy, M., Pineau, F. & Allègre, J. C. Carbon geodynamic cycle. Nature 300, 171–173 (1982)

    Article  ADS  CAS  Google Scholar 

  8. Zhang, Y. & Zindler, A. Distribution and evolution of carbon and nitrogen in Earth. Earth Planet. Sci. Lett. 117, 331–345 (1993)

    Article  ADS  CAS  Google Scholar 

  9. Moore, J. G. Water content of basalts erupted on the ocean floor. Contrib. Mineral. Petrol. 28, 272–279 (1970)

    Article  ADS  CAS  Google Scholar 

  10. Moore, J. G. Vesicularity and CO2 in mid-ocean ridge basalt. Nature 282, 250–253 (1979)

    Article  ADS  CAS  Google Scholar 

  11. Bottinga, Y. & Javoy, M. Mid-ocean ridge basalt degassing: bubble growth and ascent. Chem. Geol. 81, 255–270 (1990)

    Article  ADS  CAS  Google Scholar 

  12. Dixon, J. E., Stolper, E. M. & Holloway, J. R. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J. Petrol. 36, 1607–1631 (1995)

    CAS  Google Scholar 

  13. Dixon, J. E. & Stolper, E. M. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: applications and degassing. J. Petrol. 36, 1633–1646 (1995)

    CAS  Google Scholar 

  14. Dixon, J. E. Degassing of alkalic basalts. Am. Mineral. 82, 368–378 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Michael, P. J. Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O. Earth Planet. Sci. Lett. 131, 301–320 (1995)

    Article  ADS  CAS  Google Scholar 

  16. Danyushevsky, L. V., Eggins, S. M., Fallon, T. J. & Christie, D. M. H2O abundance in depleted to moderately enriched mid-ocean ridge magmas. Part I: Incompatible behaviour, implications for mantle storage, and origin of regional variations. J. Petrol. 41, 1329–1364 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Wallace, P. & Carmichael, I. S. E. Sulfur in basaltic magmas. Geochim. Cosmochim. Acta 56, 1863–1874 (1992)

    Article  ADS  CAS  Google Scholar 

  18. Schilling, J. G., Bergeron, M. B. & Evans, R. Halogens in the mantle beneath the North Atlantic. Phil. Trans. R. Soc. Lond. 297, 147–178 (1980)

    Article  ADS  CAS  Google Scholar 

  19. Carroll, M. R. & Webster, J. D. Volatiles in Magmas Reviews in Mineralogy (eds Carroll, M. R. & Holloway, J. R.) Vol. 30 231–279 (Mineralogical Society of America, Book Crafters, Chelsea, MI, 1994)

    Book  Google Scholar 

  20. Michael, P. J. & Cornell, W. C. Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: Evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J. Geophys. Res. 103, 18325–18356 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Hauri, E. H., Newman, S. & Dixon, J. E. SIMS investigations of volatiles in volcanic glasses, 1: calibration, sensitivity and comparison with FTIR. Chem. Geol. (in the press)

  22. Gerlach, T. M. Comment on “Mid-ocean ridge popping rocks: implications for degassing at ridge crests” by P. Sarda and D. Graham. Earth Planet. Sci. Lett. 105, 566–567 (1991)

    Article  ADS  Google Scholar 

  23. Graham, D. & Sarda, P. Reply to comment by T. M. Gerlach on “Mid-ocean ridge popping rocks: implications for degassing at ridge crests”. Earth. Planet. Sci. Lett. 105, 568–573 (1991)

    Article  ADS  Google Scholar 

  24. Javoy, M. & Pineau, F. The volatile record of a “popping” rock from the mid-Atlantic ridge at 14° N: Chemical and isotopic composition of gas trapped in the vesicles. Earth Planet. Sci. Lett. 107, 598–611 (1991)

    Article  ADS  CAS  Google Scholar 

  25. Marty, B. & Jambon, A. C/3He in volatile fluxes from the solid Earth: implications for carbon geodynamics. Earth Planet. Sci. Lett. 83, 16–26 (1987)

    Article  ADS  CAS  Google Scholar 

  26. Marty, B. & Tolszikhin, I. N. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem. Geol. 145, 233–248 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Sobolev, A. V. & Chaussidon, M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for the H2O storage and recycling in the mantle. Earth Planet. Sci. Lett. 137, 45–55 (1996)

    Article  ADS  CAS  Google Scholar 

  28. Wallace, P. & Anderson, A. T. Encyclopedia of Volcanoes (eds Haraldur, S., Houghton, B.McNutt, S.Rymer, H. & Stix, J.) 149–170 (Academic, San Diego, 2000)

    Google Scholar 

  29. Perfit, M. R. et al. Recent volcanism in the Siqueiros transform fault: picritic basalts and implications for MORB magma genesis. Earth Planet. Sci. Lett. 141, 91–108 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Roedder, E. Fluid Inclusions Reviews in Mineralogy (ed. Ribbe, P. H.) Vol. 12 (Mineralogical Society of America, Book Crafters, Chelsea, MI, 1984)

    Book  Google Scholar 

  31. Klein, E. M. & Langmuir, C. H. Global correlation of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987)

    Article  ADS  CAS  Google Scholar 

  32. Sims, K. W. et al. Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochim. Cosmochim. Acta (in the press)

  33. Hofmann, A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988)

    Article  ADS  CAS  Google Scholar 

  34. Donnelly, K. E. The Genesis of E-MORB: Extensions and Limitations of the Hot Spot Model Thesis, Columbia Univ. (2002)

    Google Scholar 

  35. Crisp, J. A. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984)

    Article  ADS  Google Scholar 

  36. Michael, P. J. The concentration, behaviour and storage of H2O in the suboceanic upper mantle: implications for mantle metasomatism. Geochim. Cosmochim. Acta 52, 555–566 (1988)

    Article  ADS  CAS  Google Scholar 

  37. Lorand, J. P. Are spinel lherzolite xenoliths representative of the abundance of sulfur in the upper mantle? Geochim. Cosmochim. Acta 54, 1487–1492 (1990)

    Article  ADS  CAS  Google Scholar 

  38. Morgan, J. W. Ultramafic xenoliths: clues to Earth's late accretionary history. J. Geophys. Res. 91, 12375–12387 (1986)

    Article  ADS  Google Scholar 

  39. Chaussidon, M., Albarède, F. & Sheppard, S. M. Sulphur isotope variation in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth Planet. Sci. Lett. 92, 144–156 (1989)

    Article  ADS  CAS  Google Scholar 

  40. Bougault, H. et al. Mantle heterogeneity from trace elements: MAR triple junction near 14 degrees N. Earth Planet. Sci. Lett. 88, 27–36 (1988)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Wang for assistance with the ion probe; C. Hadidiacos and C. Mandeville for help with electron probe analyses; J. Dixon for discussions and access to unpublished MORB volatile data; K. Donnelly, K. Simon, J. Y. Su and P. Asimow for discussions; and W. White and P. Michael for comments and suggestions that considerably improved the manuscript. This work was supported by the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto E. Saal.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saal, A., Hauri, E., Langmuir, C. et al. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle. Nature 419, 451–455 (2002). https://doi.org/10.1038/nature01073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01073

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing