Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gestational environment programs adult depression-like behavior through methylation of the calcitonin gene-related peptide gene

Abstract

Early life exposure to specific environmental factors can increase risk for developing psychopathology including major depression in adulthood. However, the molecular pathways and epigenetic mechanisms that mediate the effects of early environments on adult mood remain poorly understood. We examined the effects of different gestational and rearing conditions on adult anxiety- and depression-like behavior using a combined reciprocal outcrossing and cross-fostering design in Balb/cJ (cJ) and C57BL/6J (B6) mouse strains. First filial (F1) hybrid offspring, which were gestated by B6 or cJ dams and then reared by either strain, were evaluated for behavior and whole-genome hippocampal gene expression during adulthood. Adult hybrid mice gestated by B6 dams showed increased depression-like behavior in the forced swim and sucrose preference tests, increased hippocampal expression of alpha calcitonin gene-related peptide (αCGRP) transcripts, and decreased methylation of the αCGRP promoter compared with those gestated by cJ dams. Differential expression of αCGRP in adulthood did not result from genomic imprinting, and differences between B6 and cJ mitochondrial DNA were not responsible for behavioral phenotypes observed. Finally, central administration of αCGRP to adult hybrid mice increased depression-like behavior, whereas the CGRP1 receptor antagonist CGRP8-37 reduced depression-like behavior in the forced swim test. Our findings suggest that gestational factors influence adult depression-like behavior through methylation of the αCGRP gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hirschfeld R, Weisssman M . Risk factors for major depression and bipolar disorder. In: Davis K, Charney D, Coyle J, Nemeroff C (eds). Neuropsychopharmacology: The Fifth Generation of Progress. Lippincott Williams & Wilkins: Philadelphia, 2002 pp 1018–1025.

    Google Scholar 

  2. Kendler KS, Gatz M, Gardner CO, Pedersen NL . A Swedish national twin study of lifetime major depression. Am J Psychiatry 2006; 163: 109–114.

    Article  PubMed  Google Scholar 

  3. Pryce CR, Ruedi-Bettschen D, Dettling AC, Weston A, Russig H, Ferger B et al. Long-term effects of early-life environmental manipulations in rodents and primates: potential animal models in depression research. Neurosci Biobehav Rev 2005; 29: 649–674.

    Article  PubMed  Google Scholar 

  4. Nemeroff CB . Neurobiological consequences of childhood trauma. J Clin Psychiatry 2004; 65 (Suppl 1): 18–28.

    CAS  PubMed  Google Scholar 

  5. Murgatroyd C, Wu Y, Bockmuhl Y, Spengler D . Genes learn from stress: how infantile trauma programs us for depression. Epigenetics 2010; 5: 194–199.

    Article  CAS  PubMed  Google Scholar 

  6. de Kloet ER, Sibug RM, Helmerhorst FM, Schmidt MV . Stress genes and the mechanism of programming the brain for later life. Neurosci Biobehav Rev 2005; 29: 271–281.

    Article  CAS  PubMed  Google Scholar 

  7. Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 1997; 277: 1659–1662.

    Article  CAS  PubMed  Google Scholar 

  8. Roseboom TJ, Painter RC, van Abeelen AF, Veenendaal MV, de Rooij SR . Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas 2011; 70: 141–145.

    Article  PubMed  Google Scholar 

  9. Jaiswal AK, Upadhyay SN, Satyan KS, Bhattacharya SK . Behavioural effects of prenatal and postnatal undernutrition in rats. Indian J Exp Biol 1996; 34: 1216–1219.

    CAS  PubMed  Google Scholar 

  10. Behan AT, van den Hove DL, Mueller L, Jetten MJ, Steinbusch HW, Cotter DR et al. Evidence of female-specific glial deficits in the hippocampus in a mouse model of prenatal stress. Eur Neuropsychopharmacol 2011; 21: 71–79.

    Article  CAS  PubMed  Google Scholar 

  11. Behan AT, van den Hove DL, Mueller L, Jetten MJ, Steinbusch HW, Cotter DR et al. Evidence of female-specific glial deficits in the hippocampus in a mouse model of prenatal stress. Eur Neuropsychopharmacol 21: 71–79.

    Article  CAS  PubMed  Google Scholar 

  12. Alonso SJ, Damas C, Navarro E . Behavioral despair in mice after prenatal stress. J Physiol Biochem 2000; 56: 77–82.

    Article  CAS  PubMed  Google Scholar 

  13. Weinstock M . Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol 2001; 65: 427–451.

    Article  CAS  PubMed  Google Scholar 

  14. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM . Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 2008; 3: 97–106.

    Article  PubMed  Google Scholar 

  15. Oberlander TF, Papsdorf M, Brain UM, Misri S, Ross C, Grunau RE . Prenatal effects of selective serotonin reuptake inhibitor antidepressants, serotonin transporter promoter genotype (SLC6A4), and maternal mood on child behavior at 3 years of age. Arch Pediatr Adolesc Med 2010; 164: 444–451.

    Article  PubMed  Google Scholar 

  16. O’Reilly EJ, Mirzaei F, Forman MR, Ascherio A . Diethylstilbestrol exposure in utero and depression in women. Am J Epidemiol 2010; 171: 876–882.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tsankova N, Renthal W, Kumar A, Nestler EJ . Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007; 8: 355–367.

    Article  CAS  PubMed  Google Scholar 

  18. Roth TL, Lubin FD, Funk AJ, Sweatt JD . Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry 2009; 65: 760–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Priebe K, Romeo RD, Francis DD, Sisti HM, Mueller A, McEwen BS et al. Maternal influences on adult stress and anxiety-like behavior in C57BL/6J and BALB/cJ mice: a cross-fostering study. Dev Psychobiol 2005; 47: 398–407.

    Article  CAS  PubMed  Google Scholar 

  20. Tarantino LM, Sullivan PF, Meltzer-Brody S . Using animal models to disentangle the role of genetic, epigenetic, and environmental influences on behavioral outcomes associated with maternal anxiety and depression. Front Psychiatry 2011; 2: 44.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Anisman H, Zaharia MD, Meaney MJ, Merali Z . Do early-life events permanently alter behavioral and hormonal responses to stressors? Int J Dev Neurosci 1998; 16: 149–164.

    Article  CAS  PubMed  Google Scholar 

  22. Carlier M, Roubertoux P, Cohen-Salmon C . Differences in patterns of pup care in Mus musculus domesticus l-Comparisons between eleven inbred strains. Behav Neural Biol 1982; 35: 205–210.

    Article  CAS  PubMed  Google Scholar 

  23. Jiao J, Nitzke AM, Doukas DG, Seiglie MP, Dulawa SC . Antidepressant response to chronic citalopram treatment in eight inbred mouse strains. Psychopharmacology (Berl) 2010; 213: 509–520.

    Article  Google Scholar 

  24. Sugimoto Y, Kajiwara Y, Hirano K, Yamada S, Tagawa N, Kobayashi Y et al. Mouse strain differences in immobility and sensitivity to fluvoxamine and desipramine in the forced swimming test: analysis of serotonin and noradrenaline transporter binding. Eur J Pharmacol 2008; 592: 116–122.

    Article  CAS  PubMed  Google Scholar 

  25. Lucki I, Dalvi A, Mayorga AJ . Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 2001; 155: 315–322.

    Article  CAS  Google Scholar 

  26. Alcaro A, Cabib S, Ventura R, Puglisi-Allegra S . Genotype- and experience-dependent susceptibility to depressive-like responses in the forced-swimming test. Psychopharmacology (Berl) 2002; 164: 138–143.

    Article  CAS  Google Scholar 

  27. Pinhas A, Aviel M, Koen M, Gurgov S, Acosta V, Israel M et al. Strain differences in sucrose- and fructose-conditioned flavor preferences in mice. Physiol Behav 2011; 105: 451–459.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Malykhin NV, Carter R, Seres P, Coupland NJ . Structural changes in the hippocampus in major depressive disorder: contributions of disease and treatment. J Psychiatry Neurosci 2010; 35: 337–343.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Frodl T, Meisenzahl EM, Zetzsche T, Born C, Groll C, Jager M et al. Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry 2002; 159: 1112–1118.

    Article  PubMed  Google Scholar 

  30. Dulawa SC, Holick KA, Gundersen B, Hen R . Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 2004; 29: 1321–1330.

    CAS  PubMed  Google Scholar 

  31. Holick KA, Lee DC, Hen R, Dulawa SC . Effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology 2008; 33: 406–417.

    CAS  PubMed  Google Scholar 

  32. Cizza G, Marques AH, Eskandari F, Christie IC, Torvik S, Silverman MN et al. Elevated neuroimmune biomarkers in sweat patches and plasma of premenopausal women with major depressive disorder in remission: the POWER study. Biol Psychiatry 2008; 64: 907–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mathe AA, Agren H, Lindstrom L, Theodorsson E . Increased concentration of calcitonin gene-related peptide in cerebrospinal fluid of depressed patients. A possible trait marker of major depressive disorder. Neurosci Lett 1994; 182: 138–142.

    Article  CAS  PubMed  Google Scholar 

  34. Mathe AA, Agren H, Wallin A, Blennow K . Calcitonin gene-related peptide and calcitonin in the CSF of patients with dementia and depression: possible disease markers. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26: 41–48.

    Article  CAS  PubMed  Google Scholar 

  35. Sittig LJ, Herzing LB, Shukla PK, Redei EE . Parent-of-origin allelic contributions to deiodinase-3 expression elicit localized hyperthyroid milieu in the hippocampus. Mol Psychiatry 2011; 16: 786–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bayona-Bafaluy MP, Acin-Perez R, Mullikin JC, Park JS, Moreno-Loshuertos R, Hu P et al. Revisiting the mouse mitochondrial DNA sequence. Nucleic Acids Res 2003; 31: 5349–5355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Amara SG, Evans RM, Rosenfeld MG . Calcitonin/calcitonin gene-related peptide transcription unit: tissue-specific expression involves selective use of alternative polyadenylation sites. Mol Cell Biol 1984; 4: 2151–2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cryan JF, Lucki I . Antidepressant-like behavioral effects mediated by 5-Hydroxytryptamine(2C) receptors. J Pharmacol Exp Ther 2000; 295: 1120–1126.

    CAS  PubMed  Google Scholar 

  39. Wang L, Jiao J, Dulawa SC . Infant maternal separation impairs adult cognitive performance in BALB/cJ mice. Psychopharmacology (Berl) 2011; 216: 207–218.

    Article  CAS  Google Scholar 

  40. Shumake J, Colorado RA, Barrett DW, Gonzalez-Lima F . Metabolic mapping of the effects of the antidepressant fluoxetine on the brains of congenitally helpless rats. Brain Res 2010; 1343: 218–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thomas DN, Nutt DJ, Holman RB . Sertraline, a selective serotonin reuptake inhibitor modulates extracellular noradrenaline in the rat frontal cortex. J Psychopharmacol 1998; 12: 366–370.

    Article  CAS  PubMed  Google Scholar 

  42. Page ME, Abercrombie ED . An analysis of the effects of acute and chronic fluoxetine on extracellular norepinephrine in the rat hippocampus during stress. Neuropsychopharmacology 1997; 16: 419–425.

    Article  CAS  PubMed  Google Scholar 

  43. Cryan JF, Page ME, Lucki I . Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology (Berl) 2005; 182: 335–344.

    Article  CAS  Google Scholar 

  44. Brummelte S, Lieblich SE, Galea LA . Gestational and postpartum corticosterone exposure to the dam affects behavioral and endocrine outcome of the offspring in a sexually-dimorphic manner. Neuropharmacology 2012; 62: 406–418.

    Article  CAS  PubMed  Google Scholar 

  45. Van den Bergh BR, Van Calster B, Smits T, Van Huffel S, Lagae L . Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: a prospective study on the fetal origins of depressed mood. Neuropsychopharmacology 2008; 33: 536–545.

    Article  PubMed  Google Scholar 

  46. Weinstock M . The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 2008; 32: 1073–1086.

    Article  CAS  PubMed  Google Scholar 

  47. Brown AS, Susser ES, Lin SP, Neugebauer R, Gorman JM . Increased risk of affective disorders in males after second trimester prenatal exposure to the Dutch hunger winter of 1944-45. Br J Psychiatry 1995; 166: 601–606.

    Article  CAS  PubMed  Google Scholar 

  48. Muskiet FA, Kemperman RF . Folate and long-chain polyunsaturated fatty acids in psychiatric disease. J Nutr Biochem 2006; 17: 717–727.

    Article  CAS  PubMed  Google Scholar 

  49. Herrick K, Phillips DI, Haselden S, Shiell AW, Campbell-Brown M, Godfrey KM . Maternal consumption of a high-meat, low-carbohydrate diet in late pregnancy: relation to adult cortisol concentrations in the offspring. J Clin Endocrinol Metab 2003; 88: 3554–3560.

    Article  CAS  PubMed  Google Scholar 

  50. Davis EP, Glynn LM, Schetter CD, Hobel C, Chicz-Demet A, Sandman CA . Prenatal exposure to maternal depression and cortisol influences infant temperament. J Am Acad Child Adolesc Psychiatry 2007; 46: 737–746.

    Article  PubMed  Google Scholar 

  51. Gerlinskaya LA, Evsikov VI . Influence of genetic dissimilarity of mother and fetus on progesterone concentrations in pregnant mice and adaptive features of offspring. Reproduction 2001; 121: 409–417.

    Article  CAS  PubMed  Google Scholar 

  52. Voleti B, Duman RS . The roles of neurotrophic factor and Wnt signaling in depression. Clin Pharmacol Ther 2012; 91: 333–338.

    Article  CAS  PubMed  Google Scholar 

  53. Duman RS . Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 2004; 5: 11–25.

    Article  CAS  PubMed  Google Scholar 

  54. Schorscher-Petcu A, Austin JS, Mogil JS, Quirion R . Role of central calcitonin gene-related peptide (CGRP) in locomotor and anxiety- and depression-like behaviors in two mouse strains exhibiting a CGRP-dependent difference in thermal pain sensitivity. J Mol Neurosci 2009; 39: 125–136.

    Article  CAS  PubMed  Google Scholar 

  55. Recober A, Russo AF . Calcitonin gene-related peptide: an update on the biology. Curr Opin Neurol 2009; 22: 241–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sink KS, Walker DL, Yang Y, Davis M . Calcitonin gene-related peptide in the bed nucleus of the stria terminalis produces an anxiety-like pattern of behavior and increases neural activation in anxiety-related structures. J Neurosci 2011; 31: 1802–1810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim J, Noskov VN, Lu X, Bergmann A, Ren X, Warth T et al. Discovery of a novel, paternally expressed ubiquitin-specific processing protease gene through comparative analysis of an imprinted region of mouse chromosome 7 and human chromosome 19q13.4. Genome Res 2000; 10: 1138–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. MacDonald HR, Wevrick R . The necdin gene is deleted in Prader-Willi syndrome and is imprinted in human and mouse. Hum Mol Genet 1997; 6: 1873–1878.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by National Institutes of Health Grants. MH079424 and a NARSAD Young Investigator Award to SCD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S C Dulawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, J., Opal, M. & Dulawa, S. Gestational environment programs adult depression-like behavior through methylation of the calcitonin gene-related peptide gene. Mol Psychiatry 18, 1273–1280 (2013). https://doi.org/10.1038/mp.2012.136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.136

Keywords

This article is cited by

Search

Quick links