Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A threonine to isoleucine missense mutation in the pericentriolar material 1 gene is strongly associated with schizophrenia

Abstract

Markers at the pericentriolar material 1 gene (PCM1) have shown genetic association with schizophrenia in both a University College London (UCL) and a USA-based case–control sample. In this paper we report a statistically significant replication of the PCM1 association in a large Scottish case–control sample from Aberdeen. Resequencing of the genomic DNA from research volunteers who had inherited haplotypes associated with schizophrenia showed a threonine to isoleucine missense mutation in exon 24 which was likely to change the structure and function of PCM1 (rs370429). This mutation was found only as a heterozygote in 98 schizophrenic research subjects and controls out of 2246 case and control research subjects. Among the 98 carriers of rs370429, 67 were affected with schizophrenia. The same alleles and haplotypes were associated with schizophrenia in both the London and Aberdeen samples. Another potential aetiological base pair change in PCM1 was rs445422, which altered a splice site signal. A further mutation, rs208747, was shown by electrophoretic mobility shift assays to create or destroy a promoter transcription factor site. Five further non-synonymous changes in exons were also found. Genotyping of the new variants discovered in the UCL case–control sample strengthened the evidence for allelic and haplotypic association (P=0.02–0.0002). Given the number and identity of the haplotypes associated with schizophrenia, further aetiological base pair changes must exist within and around the PCM1 gene. PCM1 protein has been shown to interact directly with the disrupted-in-schizophrenia 1 (DISC1) protein, Bardet-Biedl syndrome 4, and Huntingtin-associated protein 1, and is important in neuronal cell growth. In a separate study we found that clozapine but not haloperidol downregulated PCM1 expression in the mouse brain. We hypothesize that mutant PCM1 may be responsible for causing a subtype of schizophrenia through abnormal cell division and abnormal regeneration in dividing cells in the central nervous system. This is supported by our previous finding of orbitofrontal volumetric deficits in PCM1-associated schizophrenia patients as opposed to temporal pole deficits in non-PCM1-associated schizophrenia patients. Caution needs to be exercised in interpreting the actual biological effects of the mutations we have found without further cell biology. However, the DNA changes we have found deserve widespread genotyping in multiple case–control populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Fulker DW . A biometrical genetic approach to intelligence and schizophrenia. Soc Biol 1973; 20: 266–275.

    Article  CAS  Google Scholar 

  2. McGue M, Gottesman II, Rao DC . The transmission of schizophrenia under a multifactorial threshold model. Am J Hum Genet 1983; 35: 1161–1178.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  Google Scholar 

  4. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  Google Scholar 

  5. Brzustowicz LM, Honer WG, Chow EW, Little D, Hogan J, Hodgkinson K et al. Linkage of familial schizophrenia to chromosome 13q32. Am J Hum Genet 1999; 65: 1096–1103.

    Article  CAS  Google Scholar 

  6. Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21–22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. Am J Hum Genet 2001; 68: 661–673.

    Article  CAS  Google Scholar 

  7. Kendler KS, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families. Am J Psychiatry 1996; 153: 1534–1540.

    Article  CAS  Google Scholar 

  8. Gurling HM, Critchley H, Datta SR, McQuillin A, Blaveri E, Thirumalai S et al. Genetic association and brain morphology studies and the chromosome 8p22 pericentriolar material 1 (PCM1) gene in susceptibility to schizophrenia. Arch Gen Psychiatry 2006; 63: 844–854.

    Article  Google Scholar 

  9. Rizig MA, McQuillin A, Robinson M, Hunt SP, Ng A, Harrison A et al. A gene expression and systems pathway analysis of the effects of clozapine compared to haloperidol in the mouse brain implicates susceptibility genes for schizophrenia. (Unpublished data).

  10. Balczon R, Bao L, Zimmer WE . PCM-1, A 228-kD centrosome autoantigen with a distinct cell cycle distribution. J Cell Biol 1994; 124: 783–793.

    Article  CAS  Google Scholar 

  11. Kubo A, Sasaki H, Yuba-Kubo A, Tsukita S, Shiina N . Centriolar satellites: molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis. J Cell Biol 1999; 147: 969–980.

    Article  CAS  Google Scholar 

  12. Kubo A, Tsukita S . Non-membranous granular organelle consisting of PCM-1: subcellular distribution and cell-cycle-dependent assembly/disassembly. J Cell Sci 2003; 116 (Part 5): 919–928.

    Article  CAS  Google Scholar 

  13. Balczon R, Simerly C, Takahashi D, Schatten G . Arrest of cell cycle progression during first interphase in murine zygotes microinjected with anti-PCM-1 antibodies. Cell Motil Cytoskeleton 2002; 52: 183–192.

    Article  CAS  Google Scholar 

  14. Dammermann A, Merdes A . Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol 2002; 159: 255–266.

    Article  CAS  Google Scholar 

  15. Kamiya AT, Kubo PL, Engelhard K-I, Ishizuka C, Kubo K, Tsukita A et al. A PCM1 is recruited to the centrosome by the cooperative action of DISC1 and BBS4 and is a candidate for psychiatric illness. Arch Gen Psychiatry 2008; 65: 996–1006.

    Article  CAS  Google Scholar 

  16. Kim JC, Badano JL, Sibold S, Esmail MA, Hill J, Hoskins BE et al. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet 2004; 36: 462–470.

    Article  CAS  Google Scholar 

  17. Badano JL, Teslovich TM, Katsanis N . The centrosome in human genetic disease. Nat Rev Genet 2005; 6: 194–205.

    Article  CAS  Google Scholar 

  18. Spitzer R, Endicott J . The Schedule for Affective Disorders and Schizophrenia, Lifetime Version, 3rd edn. New York State Psychiatric Institute: New York, 1977.

    Google Scholar 

  19. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83–87.

    Article  CAS  Google Scholar 

  20. Rozen S, SkaletskyIn HJ . Primer3 on the WWW for General Users and for Biologist Programmers. Humana Press: Totowa, NJ, 2000; 365–386.

    Google Scholar 

  21. Middendorf LR, Bruce JC, Bruce RC, Eckles RD, Grone DL, Roemer SC et al. Continuous, on-line DNA sequencing using a versatile infrared laser scanner/electrophoresis apparatus. Electrophoresis 1992; 13: 487–494.

    Article  CAS  Google Scholar 

  22. Curtis D, Knight J, Sham PC . Program report: GENECOUNTING support programs. Ann Hum Genet 2006; 70 (Part 2): 277–279.

    Article  CAS  Google Scholar 

  23. Zhao JH, Lissarrague S, Essioux L, Sham PC . GENECOUNTING: haplotype analysis with missing genotypes. Bioinformatics 2002; 18: 1694–1695.

    Article  CAS  Google Scholar 

  24. Zhao JH, Curtis D, Sham PC . Model-free analysis and permutation tests for allelic associations. Hum Hered 2000; 50: 133–139.

    Article  CAS  Google Scholar 

  25. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  26. Schug J . Using TESS to predict transcription factor binding sites in DNA sequence. In: Baxevanis AD (ed). Current Protocols in Bioinformatics. John Wiley and Sons, London, 2003.

    Google Scholar 

  27. Kelley LA, Maccallum R, Sternberg MJE . Recognition of remote protein homologies using three-dimensional information to generate a position specific scoring matrix in the program 3D-PSSM. In: Istrail I, Pevzner P, Waterman M (eds). RECOMB 99, Proceedings of the Third Annual Conference on Computational Molecular Biology. The Association for Computing Machinery: New York, 1999, pp 218–225.

    Chapter  Google Scholar 

  28. Kelley LA, MacCallum RM, Sternberg MJE . Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 2000; 299: 499–520.

    Article  CAS  Google Scholar 

  29. Fischer D, Barret C, Bryson K, Elofsson A, Godzik A, Jones D et al. CAFASP-1: critical assessment of fully automated structure prediction methods. Proteins Struct Funct Genet 1999; Suppl 3: 209–217.

    Article  Google Scholar 

  30. Gossett LA, Kelvin DJ, Sternberg EA, Olson EN . A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol 1989; 9: 5022–5033.

    Article  CAS  Google Scholar 

  31. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H et al. Association of missense and 5[prime]-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998; 393: 702–705.

    Article  CAS  Google Scholar 

  32. Levinson DF, Mowry BJ, Sharpe L, Endicott J . Penetrance of schizophrenia-related disorders in multiplex families after correction for ascertainment. Genet Epidemiol 1996; 13: 11–21.

    Article  CAS  Google Scholar 

  33. Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin JL et al. Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med Genet 1995; 60: 252–260.

    Article  CAS  Google Scholar 

  34. Li YC, Korol AB, Fahima T, Nevo E . Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 2004; 21: 991–1007.

    Article  CAS  Google Scholar 

  35. Chiba-Falek O, Kowalak JA, Smulson ME, Nussbaum RL . Regulation of alpha-synuclein expression by poly (ADP ribose) polymerase-1 (PARP-1) binding to the NACP-Rep1 polymorphic site upstream of the SNCA gene. Am J Hum Genet 2005; 76: 478–492.

    Article  CAS  Google Scholar 

  36. Martin P, Makepeace K, Hill SA, Hood DW, Moxon ER . Microsatellite instability regulates transcription factor binding and gene expression. PNAS 2005; 102: 3800–3804.

    Article  CAS  Google Scholar 

  37. Iglesias AR, Kindlund E, Tammi M, Wadelius C . Some microsatellites may act as novel polymorphic cis-regulatory elements through transcription factor binding. Gene 2004; 341: 149–165.

    Article  CAS  Google Scholar 

  38. Gabellini N . A polymorphic GT repeat from the human cardiac Na+Ca2+ exchanger intron 2 activates splicing. Eur J Biochem 2001; 268: 1076–1083.

    Article  CAS  Google Scholar 

  39. Becker E, Richardson DR . Frataxin: its role in iron metabolism and the pathogenesis of Friedreich's ataxia. Int J Biochem Cell Biol 2001; 33: 1–10.

    Article  CAS  Google Scholar 

  40. Bachtrog D, Weiss S, Zangerl B, Brem G, Schlotterer C . Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. Mol Biol Evol 1999; 16: 602–610.

    Article  CAS  Google Scholar 

  41. Khashnobish A, Hamann A, Osiewacz HD . Modulation of gene expression by (CA) n microsatellites in the filamentous ascomycete Podospora anserina. Appl Microbiol Biotechnol 1999; 52: 191–195.

    Article  CAS  Google Scholar 

  42. La Rota M, Kantety R, Yu J-K, Sorrells M . Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 2005; 6: 23.

    Article  Google Scholar 

  43. Morgante M, Hanafey M, Powell W . Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 2002; 30: 194–200.

    Article  CAS  Google Scholar 

  44. Duan J, Antezana MA . Mammalian mutation pressure, synonymous codon choice, and mRNA degradation. J Mol Evol 2003; 57: 694–701.

    Article  CAS  Google Scholar 

  45. Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 2003; 12: 205–216.

    Article  CAS  Google Scholar 

  46. Engelender S, Sharp AH, Colomer V, Tokito MK, Lanahan A, Worley P et al. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum Mol Genet 1997; 6: 2205–2212.

    Article  CAS  Google Scholar 

  47. Li Q, Hansen D, Killilea A, Joshi HC, Palazzo RE, Balczon R . Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1. J Cell Sci 2001; 114 (Part 4): 797–809.

    CAS  PubMed  Google Scholar 

  48. Ansley SJ, Badano JL, Blacque OE, Hill J, Hoskins BE, Leitch CC et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 2003; 425: 628–633.

    Article  CAS  Google Scholar 

  49. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  Google Scholar 

  50. Andrieux A, Salin PA, Vernet M, Kujala P, Baratier J, Gory-Faure S et al. The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev 2002; 16: 2350–2364.

    Article  CAS  Google Scholar 

  51. Li X-J, Sharp AH, Li S-H, Dawson TM, Snyder SH, Ross CA . Huntingtin-associated protein (HAP1): discrete neuronal localizations in the brain resemble those of neuronal nitric oxide synthase. PNAS 1996; 93: 4839–4844.

    Article  CAS  Google Scholar 

  52. DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 1995; 14: 1075–1081.

    Article  CAS  Google Scholar 

  53. Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y et al. Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nat Genet 1995; 10: 104–110.

    Article  CAS  Google Scholar 

  54. Sharp AH, Loev SJ, Schilling G, Li SH, Li XJ, Bao J et al. Widespread expression of Huntington's disease gene (IT15) protein product. Neuron 1995; 14: 1065–1074.

    Article  CAS  Google Scholar 

  55. Shiwach R . Psychopathology in Huntington's disease patients. Acta –Psychiatr Scand 1994; 90: 241–246 *LHM: This title is currently taken by UCL: Boldero & Neurology ISSN: 0001-0690X.

    Article  CAS  Google Scholar 

  56. Tsuang D, DiGiacomo L, Lipe H, Bird TD . Familial aggregation of schizophrenia-like symptoms in Huntington's disease. Am J Med Genet 1998; 81: 323–327 issn: 0148–7299.

    Article  CAS  Google Scholar 

  57. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ . Schizophrenia and affective disorders—cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001; 69: 428–433.

    Article  CAS  Google Scholar 

  58. Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75: 862–872.

    Article  CAS  Google Scholar 

  59. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  Google Scholar 

  60. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003; 12: 3151–3159.

    Article  CAS  Google Scholar 

  61. Millar JK, James R, Brandon NJ, Thomson PA . DISC1 and DISC2: discovering and dissecting molecular mechanisms underlying psychiatric illness. Ann Med 2004; 36: 367–378.

    Article  CAS  Google Scholar 

  62. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K et al. Disrupted-in-schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA 2003; 100: 289–294.

    Article  CAS  Google Scholar 

  63. Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T et al. Disrupted-in-schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 2003; 8: 685–694.

    Article  CAS  Google Scholar 

  64. Brandon NJ, Handford EJ, Schurov I, Rain JC, Pelling M, Duran-Jimeniz B et al. Disrupted in schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders. Mol Cell Neurosci 2004; 25: 42–55.

    Article  CAS  Google Scholar 

  65. Fatemi SH, Kroll JL, Stary JM . Altered levels of Reelin and its isoforms in schizophrenia and mood disorders. Neuroreport 2001; 12: 3209–3215.

    Article  CAS  Google Scholar 

  66. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. PNAS 1998; 95: 15718–15723.

    Article  CAS  Google Scholar 

  67. Ikeda M, Iwata N, Suzuki T, Kitajima T, Yamanouchi Y, Kinoshita Y et al. Association of AKT1 with schizophrenia confirmed in a Japanese population. Biol Psychiatry 2004; 56: 698–700.

    Article  CAS  Google Scholar 

  68. Bhat RV, Budd SL . GSK3b signalling: casting a wide net in Alzheimer's disease. Neurosignals 2002; 11: 251–261.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Neuroscience Research Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H M D Gurling.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, S., McQuillin, A., Rizig, M. et al. A threonine to isoleucine missense mutation in the pericentriolar material 1 gene is strongly associated with schizophrenia. Mol Psychiatry 15, 615–628 (2010). https://doi.org/10.1038/mp.2008.128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.128

Keywords

This article is cited by

Search

Quick links