Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplasias

Recurrent DNMT3A mutations in patients with myelodysplastic syndromes

Abstract

Alterations in DNA methylation have been implicated in the pathogenesis of myelodysplastic syndromes (MDS), although the underlying mechanism remains largely unknown. Methylation of CpG dinucleotides is mediated by DNA methyltransferases, including DNMT1, DNMT3A and DNMT3B. DNMT3A mutations have recently been reported in patients with de novo acute myeloid leukemia (AML), providing a rationale for examining the status of DNMT3A in MDS samples. In this study, we report the frequency of DNMT3A mutations in patients with de novo MDS, and their association with secondary AML. We sequenced all coding exons of DNMT3A using DNA from bone marrow and paired normal cells from 150 patients with MDS and identified 13 heterozygous mutations with predicted translational consequences in 12/150 patients (8.0%). Amino acid R882, located in the methyltransferase domain of DNMT3A, was the most common mutation site, accounting for 4/13 mutations. DNMT3A mutations were expressed in the majority of cells in all tested mutant samples regardless of myeloblast counts, suggesting that DNMT3A mutations occur early in the course of MDS. Patients with DNMT3A mutations had worse overall survival compared with patients without DNMT3A mutations (P=0.005) and more rapid progression to AML (P=0.007), suggesting that DNMT3A mutation status may have prognostic value in de novo MDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Esteller M . Epigenetics in cancer. N Engl J Med 2008; 358: 1148–1159.

    Article  CAS  Google Scholar 

  2. Sharma S, Kelly TK, Jones PA . Epigenetics in cancer. Carcinogenesis 2009; 31: 27–36.

    Article  Google Scholar 

  3. Ting AH, McGarvey KM, Baylin SB . The cancer epigenome--components and functional correlates. Genes Dev 2006; 20: 3215–3231.

    Article  CAS  Google Scholar 

  4. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010; 17: 13–27.

    Article  CAS  Google Scholar 

  5. Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 2009; 114: 3448–3458.

    Article  CAS  Google Scholar 

  6. Jiang Y, Dunbar A, Gondek LP, Mohan S, Rataul M, O’Keefe C et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 2009; 113: 1315–1325.

    Article  CAS  Google Scholar 

  7. Cashen AF, Schiller GJ, O’Donnell MR, DiPersio JF . Multicenter phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J Clin Oncol 2009; 28: 556–561.

    Article  Google Scholar 

  8. Chitambar CR, Libnoch JA, Matthaeus WG, Ash RC, Ritch PS, Anderson T . Evaluation of continuous infusion low-dose 5-azacytidine in the treatment of myelodysplastic syndromes. Am J Hematol 1991; 37: 100–104.

    Article  CAS  Google Scholar 

  9. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 2006; 106: 1794–1803.

    Article  CAS  Google Scholar 

  10. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002; 20: 2429–2440.

    Article  CAS  Google Scholar 

  11. Goll MG, Bestor TH . Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005; 74: 481–514.

    Article  CAS  Google Scholar 

  12. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW et al. Induction of tumors in mice by genomic hypomethylation. Science 2003; 300: 489–492.

    Article  CAS  Google Scholar 

  13. Laird PW, Jackson-Grusby L, Fazeli A, Dickinson SL, Jung WE, Li E et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 1995; 81: 197–205.

    Article  CAS  Google Scholar 

  14. Xu GL, Bestor TH, Bourc’his D, Hsieh CL, Tommerup N, Bugge M et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 1999; 402: 187–191.

    Article  CAS  Google Scholar 

  15. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  Google Scholar 

  16. Graubert TA, Payton MA, Shao J, Walgren RA, Monahan RS, Frater JL et al. Integrated genomic analysis implicates haploinsufficiency of multiple chromosome 5q31.2 genes in de novo myelodysplastic syndromes pathogenesis. PLoS One 2009; 4: e4583.

    Article  Google Scholar 

  17. Ng PC, Henikoff S . Predicting deleterious amino acid substitutions. Genome Res 2001; 11: 863–874.

    Article  CAS  Google Scholar 

  18. Ramensky V, Bork P, Sunyaev S . Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002; 30: 3894–3900.

    Article  CAS  Google Scholar 

  19. Yamashita Y, Yuan J, Suetake I, Suzuki H, Ishikawa Y, Choi YL et al. Array-based genomic resequencing of human leukemia. Oncogene 2010; 29: 3723–3731.

    Article  CAS  Google Scholar 

  20. Gowher H, Loutchanwoot P, Vorobjeva O, Handa V, Jurkowska RZ, Jurkowski TP et al. Mutational analysis of the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase. J Mol Biol 2006; 357: 928–941.

    Article  CAS  Google Scholar 

  21. Okano M, Bell DW, Haber DA, Li E . DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99: 247–257.

    Article  CAS  Google Scholar 

  22. Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004; 429: 900–903.

    Article  CAS  Google Scholar 

  23. Tadokoro Y, Ema H, Okano M, Li E, Nakauchi H . De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med 2007; 204: 715–722.

    Article  CAS  Google Scholar 

  24. Subramanyam D, Belair CD, Barry-Holson KQ, Lin H, Kogan SC, Passegue E et al. PML-RAR{alpha} and Dnmt3a1 cooperate in vivo to promote acute promyelocytic leukemia. Cancer Res 2010; 70: 8792–8801.

    Article  CAS  Google Scholar 

  25. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    Article  Google Scholar 

  26. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010; 42: 722–726.

    Article  CAS  Google Scholar 

  27. Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M, Huh J et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 2009; 113: 6403–6410.

    Article  CAS  Google Scholar 

  28. Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 2009; 41: 838–842.

    Article  CAS  Google Scholar 

  29. Mohamedali AM, Smith AE, Gaken J, Lea NC, Mian SA, Westwood NB et al. Novel TET2 mutations associated with UPD4q24 in myelodysplastic syndrome. J Clin Oncol 2009; 27: 4002–4006.

    Article  CAS  Google Scholar 

  30. Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 2010; 42: 665–667.

    Article  CAS  Google Scholar 

  31. Tefferi A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Patnaik MM et al. Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia 2009; 23: 1343–1345.

    Article  CAS  Google Scholar 

  32. Viguie F, Aboura A, Bouscary D, Ramond S, Delmer A, Tachdjian G et al. Common 4q24 deletion in four cases of hematopoietic malignancy: early stem cell involvement? Leukemia 2005; 19: 1411–1415.

    Article  CAS  Google Scholar 

  33. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science (New York, NY 2007; 318: 447–450.

    Article  CAS  Google Scholar 

  34. Laible G, Wolf A, Dorn R, Reuter G, Nislow C, Lebersorger A et al. Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at Scerevisiae telomeres. Embo J 1997; 16: 3219–3232.

    Article  CAS  Google Scholar 

  35. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010; 468: 839–843.

    Article  CAS  Google Scholar 

  36. Acquaviva C, Gelsi-Boyer V, Birnbaum D . Myelodysplastic syndromes: lost between two states? Leukemia 2010; 24: 1–5.

    Article  CAS  Google Scholar 

  37. Sinclair DA, Milne TA, Hodgson JW, Shellard J, Salinas CA, Kyba M et al. The Additional sex combs gene of Drosophila encodes a chromatin protein that binds to shared and unique Polycomb group sites on polytene chromosomes. Development 1998; 125: 1207–1216.

    CAS  PubMed  Google Scholar 

  38. Steensma DP, Higgs DR, Fisher CA, Gibbons RJ . Acquired somatic ATRX mutations in myelodysplastic syndrome associated with alpha thalassemia (ATMDS) convey a more severe hematologic phenotype than germline ATRX mutations. Blood 2004; 103: 2019–2026.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01HL082973 (Graubert), RC2HL102927 (Graubert), U54HG003079 (Wilson), P01CA101937 (Ley), and a Howard Hughes Medical Institute Physician-Scientist Early Career Award (Walter).

Author Contributions

MW, LD, TL and TG designed the study. DS, JS, MG, MM, RF, HS, JKV and MO performed research and generated data. MW, LD, DS, JS, JB, PW, JD, EM, RW, TL and TG analyzed data. MW, LD, DS and TG wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T A Graubert.

Ethics declarations

Competing interests

These authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, M., Ding, L., Shen, D. et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 25, 1153–1158 (2011). https://doi.org/10.1038/leu.2011.44

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.44

Keywords

This article is cited by

Search

Quick links