Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Apoptosis

The dual PI3 kinase/mTOR inhibitor PI-103 prevents p53 induction by Mdm2 inhibition but enhances p53-mediated mitochondrial apoptosis in p53 wild-type AML

Abstract

Activation of the phosphatidylinositol-3 kinase/Akt/mammalian target of the rapamycin (PI3K/Akt/mTOR) pathway and inactivation of wild-type p53 by murine double minute 2 homologue (Mdm2) overexpression are frequent molecular events in acute myeloid leukemia (AML). We investigated the interaction of PI3K/Akt/mTOR and p53 pathways after their simultaneous blockade using the dual PI3K/mTOR inhibitor PI-103 and the Mdm2 inhibitor Nutlin-3. We found that PI-103, which itself has modest apoptogenic activity, acts synergistically with Nutlin-3 to induce apoptosis in a wild-type p53-dependent fashion. PI-103 synergized with Nutlin-3 to induce Bax conformational change and caspase-3 activation, despite its inhibitory effect on p53 induction. The PI-103/Nutlin-3 combination caused profound dephosphorylation of 4E-BP1 and decreased expression of many proteins including Mdm2, p21, Noxa, Bcl-2 and survivin, which can affect mitochondrial stability. We suggest that PI-103 actively enhances downstream p53 signaling and that a combination strategy aimed at inhibiting PI3K/Akt/mTOR signaling and activating p53 signaling is potentially effective in AML, where TP53 mutations are rare and downstream p53 signaling is intact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Parcellier A, Tintignac LA, Zhuravleva E, Hemmings BA . PKB and the mitochondria: AKTing on apoptosis. Cell Signal 2008; 20: 21–30.

    Article  CAS  PubMed  Google Scholar 

  2. Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N . mTOR, translation initiation and cancer. Oncogene 2006; 25: 6416–6422.

    Article  CAS  PubMed  Google Scholar 

  3. Martelli AM, Nyåkern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C et al. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 2006; 20: 911–928.

    Article  CAS  PubMed  Google Scholar 

  4. Samuels Y, Ericson K . Oncogenic PI3K and its role in cancer. Curr Opin Oncol 2006; 18: 77–82.

    Article  CAS  PubMed  Google Scholar 

  5. Song G, Ouyang G, Bao S . The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005; 9: 59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003; 102: 972–980.

    Article  CAS  PubMed  Google Scholar 

  7. Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK et al. Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 2003; 17: 995–997.

    Article  CAS  PubMed  Google Scholar 

  8. Grandage VL, Gale RE, Linch DC, Khwaja A . PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, MAPkinase and p53 pathways. Leukemia 2005; 19: 586–594.

    Article  CAS  PubMed  Google Scholar 

  9. Bardet V, Tamburini J, Ifrah N, Dreyfus F, Mayeux P, Bouscary D et al. Single cell analysis of phosphoinositide 3-kinase/Akt and ERK activation in acute myeloid leukemia by flow cytometry. Haematologica 2006; 91: 757–764.

    CAS  PubMed  Google Scholar 

  10. Kornblau SM, Womble M, Qiu YH, Jackson CE, Chen W, Konopleva M et al. Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood 2006; 108: 2358–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tamburini J, Elie C, Bardet V, Chapuis N, Park S, Broët P et al. Constitutive phosphoinositide 3-kinase/Akt activation represents a favorable prognostic factor in de novo acute myelogenous leukemia patients. Blood 2007; 110: 1025–1028.

    Article  CAS  PubMed  Google Scholar 

  12. Hollstein M, Sidransky D, Vogelstein B, Harris CC . p53 mutations in human cancers. Science 1991; 253: 49–53.

    Article  CAS  PubMed  Google Scholar 

  13. Faderl S, Kantarjian HM, Estey E, Manshouri T, Chan CY, Rahman Elsaied A et al. The prognostic significance of p16(INK4a)/p14(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous leukemia. Cancer 2000; 89: 1976–1982.

    Article  CAS  PubMed  Google Scholar 

  14. Seliger B, Papadileris S, Vogel D, Hess G, Brendel C, Störkel S et al. Analysis of the p53 and MDM-2 gene in acute myeloid leukemia. Eur J Haematol 1996; 57: 230–240.

    Article  CAS  PubMed  Google Scholar 

  15. Bueso-Ramos CE, Yang Y, deLeon E, McCown P, Stass SA, Albitar M . The human MDM-2 oncogene is overexpressed in leukemias. Blood 1993; 82: 2617–2623.

    CAS  PubMed  Google Scholar 

  16. Moll UM, Petrenko O . The MDM2-p53 interaction. Mol Cancer Res 2003; 1: 1001–1008.

    CAS  PubMed  Google Scholar 

  17. Wong S, McLaughlin J, Cheng D, Zhang C, Shokat KM, Witte ON . Sole BCR-ABL inhibition is insufficient to eliminate all myeloproliferative disorder cell populations. Proc Natl Acad Sci USA 2004; 101: 17456–17461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kojima K, Konopleva M, Samudio IJ, Ruvolo V, Andreeff M . MEK inhibition enhances nuclear proapoptotic function of p53 in AML cells. Cancer Res 2007; 67: 3210–3219.

    Article  CAS  PubMed  Google Scholar 

  19. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 2006; 10: 375–388.

    Article  CAS  PubMed  Google Scholar 

  20. Tamburini J, Chapuis N, Bardet V, Park S, Sujobert P, Willems L et al. Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood 2008; 111: 379–382.

    Article  CAS  PubMed  Google Scholar 

  21. Fan QW, Knight ZA, Goldenberg DD, Yu W, Mostov KE, Stokoe D et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006; 9: 341–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  CAS  PubMed  Google Scholar 

  23. Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 2005; 106: 3150–3159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Verhaegen M, Bauer JA, Martín de la Vega C, Wang G, Wolter KG, Brenner JC et al. A novel BH3 mimetic reveals a mitogen-activated protein kinase-dependent mechanism of melanoma cell death controlled by p53 and reactive oxygen species. Cancer Res 2006; 66: 11348–11359.

    Article  CAS  PubMed  Google Scholar 

  25. Kojima K, Konopleva M, McQueen T, O'brien S, Plunkett W, Andreeff M . Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 2006; 108: 993–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR . PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 2005; 309: 1732–1735.

    Article  CAS  PubMed  Google Scholar 

  27. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 1999; 144: 891–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kojima K, Konopleva M, Samudio IJ, Schober WD, Bornmann WG, Andreeff M . Concomitant inhibition of MDM2 and Bcl-2 protein function synergistically induce mitochondrial apoptosis in AML. Cell Cycle 2006; 5: 2778–2786.

    Article  CAS  PubMed  Google Scholar 

  29. Ashcroft M, Ludwig RL, Woods DB, Copeland TD, Weber HO, MacRae EJ et al. Phosphorylation of HDM2 by Akt. Oncogene 2002; 21: 1955–1962.

    Article  CAS  PubMed  Google Scholar 

  30. Pause A, Belsham GJ, Gingras AC, Donzé O, Lin TA, Lawrence Jr JC et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 1994; 371: 762–767.

    Article  CAS  PubMed  Google Scholar 

  31. Hay N . The Akt-mTOR tango and its relevance to cancer. Cancer Cell 2005; 8: 179–183.

    Article  CAS  PubMed  Google Scholar 

  32. Wullschleger S, Loewith R, Hall MN . TOR signaling in growth and metabolism. Cell 2006; 124: 471–484.

    Article  CAS  PubMed  Google Scholar 

  33. Tirado OM, Mateo-Lozano S, Notario V . Rapamycin induces apoptosis of JN-DSRCT-1 cells by increasing the Bax: Bcl-xL ratio through concurrent mechanisms dependent and independent of its mTOR inhibitory activity. Oncogene 2005; 24: 3348–3357.

    Article  CAS  PubMed  Google Scholar 

  34. Vega F, Medeiros LJ, Leventaki V, Atwell C, Cho-Vega JH, Tian L et al. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 2006; 66: 6589–6597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O'Reilly T et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 2005; 120: 747–759.

    Article  CAS  PubMed  Google Scholar 

  36. Yamaguchi H, Wang HG . The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 2001; 20: 7779–7786.

    Article  CAS  PubMed  Google Scholar 

  37. Arokium H, Ouerfelli H, Velours G, Camougrand N, Vallette FM, Manon S . Substitutions of potentially phosphorylatable serine residues of bax reveal how they may regulate its interaction with mitochondria. J Biol Chem 2007; 282: 35104–35112.

    Article  CAS  PubMed  Google Scholar 

  38. Horton LE, Bushell M, Barth-Baus D, Tilleray VJ, Clemens MJ, Hensold JO . p53 activation results in rapid dephosphorylation of the eIF4E-binding protein 4E-BP1, inhibition of ribosomal protein S6 kinase and inhibition of translation initiation. Oncogene 2002; 21: 5325–5334.

    Article  CAS  PubMed  Google Scholar 

  39. Tilleray V, Constantinou C, Clemens MJ . Regulation of protein synthesis by inducible wild-type p53 in human lung carcinoma cells. FEBS Lett 2006; 580: 1766–1770.

    Article  CAS  PubMed  Google Scholar 

  40. Herbert TP, Tee AR, Proud CG . The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J Biol Chem 2002; 277: 11591–11596.

    Article  CAS  PubMed  Google Scholar 

  41. Chow S, Minden MD, Hedley DW . Constitutive phosphorylation of the S6 ribosomal protein via mTOR and ERK signaling in the peripheral blasts of acute leukemia patients. Exp Hematol 2006; 34: 1183–1191.

    Article  CAS  PubMed  Google Scholar 

  42. McCubrey JA, Steelman LS, Abrams SL, Bertrand FE, Ludwig DE, Bäsecke J et al. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 2008; 22: 708–722.

    Article  CAS  PubMed  Google Scholar 

  43. Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D et al. Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 2001; 108: 851–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu K, Toral-Barza L, Shi C, Zhang WG, Zask A . Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy. Cancer Biol Ther 2007; 7: 310–318.

    Article  CAS  Google Scholar 

  45. Park S, Chapuis N, Bardet V, Willems L, Tamburini J, Knight ZA et al. PI-103, a dual inhibitor of class I phosphatidylinositide 3-kinase and mTOR, has anti-leukemic activity in acute myeloid leukemia. Blood 2007; 110: 268a. [Abstract #876].

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr Maria Soengas of Department of Dermatology, University of Michigan, Ann Arbor, MI, USA for kindly providing retrovirus encoding p53-specific shRNA. KK was supported in part by grants from the Kanae Foundation For Life and Socio-Medical Science and Novartis Foundation (Japan) for the Promotion of Science, MA by the Paul and Mary Haas Chair in Genetics and a grant from NIH, CA55164 and CA100632.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Kojima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kojima, K., Shimanuki, M., Shikami, M. et al. The dual PI3 kinase/mTOR inhibitor PI-103 prevents p53 induction by Mdm2 inhibition but enhances p53-mediated mitochondrial apoptosis in p53 wild-type AML. Leukemia 22, 1728–1736 (2008). https://doi.org/10.1038/leu.2008.158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.158

Keywords

This article is cited by

Search

Quick links