Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Air pollution exposure prediction approaches used in air pollution epidemiology studies

Abstract

Epidemiological studies of the health effects of outdoor air pollution have traditionally relied upon surrogates of personal exposures, most commonly ambient concentration measurements from central-site monitors. However, this approach may introduce exposure prediction errors and misclassification of exposures for pollutants that are spatially heterogeneous, such as those associated with traffic emissions (e.g., carbon monoxide, elemental carbon, nitrogen oxides, and particulate matter). We review alternative air quality and human exposure metrics applied in recent air pollution health effect studies discussed during the International Society of Exposure Science 2011 conference in Baltimore, MD. Symposium presenters considered various alternative exposure metrics, including: central site or interpolated monitoring data, regional pollution levels predicted using the national scale Community Multiscale Air Quality model or from measurements combined with local-scale (AERMOD) air quality models, hybrid models that include satellite data, statistically blended modeling and measurement data, concentrations adjusted by home infiltration rates, and population-based human exposure model (Stochastic Human Exposure and Dose Simulation, and Air Pollutants Exposure models) predictions. These alternative exposure metrics were applied in epidemiological applications to health outcomes, including daily mortality and respiratory hospital admissions, daily hospital emergency department visits, daily myocardial infarctions, and daily adverse birth outcomes. This paper summarizes the research projects presented during the symposium, with full details of the work presented in individual papers in this journal issue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Laden F, Schwartz J, Speizer FE, Dockery DW . Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med 2006; 173: 667–672.

    Article  CAS  Google Scholar 

  2. McKone TE, Ryan PB, Özkaynak H . Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants. J Expo Sci Environ Epidemiol 2009; 19: 30–44.

    Article  CAS  Google Scholar 

  3. Özkaynak H, Glenn B, Qualters JR, Strosnider H, McGeehin MA, Zenick H . Summary and findings of the EPA and CDC symposium on air pollution exposure and health. J Expo Sci Environ Epidemiol 2009; 19: 19–29.

    Article  Google Scholar 

  4. Pope CA, Ezzati M, Dockery DW . Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 2009; 360: 376–386.

    Article  CAS  Google Scholar 

  5. Zanobetti A, Schwartz J . The effect of fine and coarse particulate air pollution on mortality: A national analysis. Environ Health Perspect 2009; 117: 898–903.

    Article  Google Scholar 

  6. Dominici F, Peng RD, Barr CD, Bell ML . Protecting human health from air pollution: shifting from a single-pollutant to a multipollutant approach. Epidemiology 2010; 21: 187–194.

    Article  Google Scholar 

  7. Goldman GT, Mulholland JA, Russell AG, Srivastava A, Strickland MJ, Klein M et al. Ambient air pollutant measurement error: characterization and impacts in a time-series epidemiologic study in Atlanta. Environ Sci Technol 2010; 44: 7692–7698.

    Article  CAS  Google Scholar 

  8. Goldman GT, Mulholland JA, Russell AG, Strickland MJ, Klein M, Waller LA et al. Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies. Environ Health 2011; 10: 1–11.

    Article  Google Scholar 

  9. Gryparis A, Paciorek CJ . Measurement error caused by spatial misalignment in environmental epidemiology. Biostatistics 2009; 10: 258–274.

    Article  Google Scholar 

  10. Sarnat SE, Klein M, Sarnat JA, Flanders WD, Waller LA, Mulholland JA et al. An examination of exposure measurement error from air pollutant spatial variability in time-series studies. J Expo Sci Environ Epidemiol 2010; 20: 135–146.

    Article  CAS  Google Scholar 

  11. Thurston GD, Bekkedal MYV, Roberts EM, Ito K, Pope CA, Glenn BS et al. Use of health information in air pollution health research: past successes and emerging needs. J Expo Sci Environ Epidemiol 2009; 19: 45–58.

    Article  CAS  Google Scholar 

  12. Setton E, Marshall JD, Brauer M, Lundquist KR, Hystad P, Keller P et al. The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. J Expo Sci Environ Epidemiol 2011; 21: 42–48.

    Article  Google Scholar 

  13. Allen R, Larson T, Sheppard L, Wallace L, Liu LS . Use of real-time light scattering data to estimate the contribution of infiltrated and indoor-generated particles to indoor air. Environ Sci Technol 2003; 37: 3484–3492.

    Article  CAS  Google Scholar 

  14. Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Exp Anal Environ Epidemiol 2001; 11: 231–252.

    Article  CAS  Google Scholar 

  15. Sarnat JA, Long CM, Koutrakis P, Coull BA, Schwartz J, Suh HH . Using sulfur as a tracer of outdoor fine particulate matter. Environ Sci Technol 2002; 36: 5305–5314.

    Article  CAS  Google Scholar 

  16. Sarnat JA, Koutrakis P, Suh HH . Assessing the relationship between personal particulate and gaseous exposures of senior citizens living in Baltimore, MD. J Air Waste Manag Assoc 2000; 50: 1184–1198.

    Article  CAS  Google Scholar 

  17. Sarnat SE, Coull BA, Ruiz PA, Koutrakis P, Suh HH . The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences. J Air Waste Manag Assoc 2006; 56: 186–196.

    Article  CAS  Google Scholar 

  18. Weisel CP, Zhang J, Turpin BJ, Morandi MT, Colome S, Stock TH et al. Relationships of indoor, outdoor, and personal air (RIOPA): part 1, collection methods and descriptive analyses. Health Effects Institute 2005; 130: 1–107.

    Google Scholar 

  19. Baxter LK, Clougherty JE, Laden F, Levy JI . Predictors of concentrations of nitrogen dioxide, fine particulate matter, and particle constituents inside of lower socioeconomic status urban homes. J Expo Sci Environ Epidemiol 2007; 17: 433–444.

    Article  CAS  Google Scholar 

  20. Meng QY, Spector D, Colome S, Turpin B . Determinants of indoor and personal exposure to PM2.5 of indoor and outdoor origin during the RIOPA study. Atmospheric Environ 2009; 43: 5750–5758.

    Article  CAS  Google Scholar 

  21. Wilson WE, Brauer M . Estimation of ambient and non-ambient components of particulate matter exposure from a personal monitoring panel study. J Expo Sci Environ Epidemiol 2006; 16: 264–274.

    Article  CAS  Google Scholar 

  22. Cook R, Isakov V, Touma JS, Benjey W, Thurman J, Kinnee E et al. Resolving local-scale emissions for modeling air quality near roadways. J Air Waste Manag Assoc 2008; 58: 451–461.

    Article  CAS  Google Scholar 

  23. Isakov V, Touma JS, Burke J, Lobdell DT, Palma T, Rosenbaum A et al. Combining regional- and local-scale air quality models with exposure models for use in environmental health studies. J Air Waste Manag Assoc 2009; 59: 461–472.

    Article  CAS  Google Scholar 

  24. Ivy D, Mulholland JA, Russell AG . Development of ambient air quality population-weighted metrics for use in time-series health studies. J Air Waste Manag Assoc 2008; 58: 711–720.

    Article  CAS  Google Scholar 

  25. Lobdell DT, Isakov V, Baxter L, Touma JS, Smuts MB, Özkaynak H . Feasibility of assessing public health impacts of air pollution reduction programs on a local scale: New Haven case study. Environ Health Perspect 2011; 119: 487–493.

    Article  Google Scholar 

  26. Özkaynak H, Palma T, Touma JS, Thurman J . Modeling population exposures to outdoor sources of hazardous air pollutants. J Expo Sci Environ Epidemiol 2008; 18: 45–58.

    Article  Google Scholar 

  27. Stein AF, Isakov V, Godowitch J, Draxler RR . A hybrid modeling approach to resolve pollutant concentrations in an urban area. Atmospheric Environ 2007; 41: 9410–9426.

    Article  CAS  Google Scholar 

  28. Burke JM, Zufall MJ, Özkaynak H . A population exposure model for particulate matter: case study results for PM2.5 in Philadelphia, PA. J Expo Anal Environ Epidemiol 2001; 11: 470–489.

    Article  CAS  Google Scholar 

  29. Cao Y, Frey HC . Geographic differences in inter-individual variability of human exposure to fine particulate matter. Atmospheric Environ 2011; 45: 5684–5691.

    Article  CAS  Google Scholar 

  30. Georgopoulos PG, Wang S-W, Vyas VM, Sun Q, Burke J, Vedantham R et al. A source-to-dose assessment of population exposures to fine PM and ozone in Philadelphia, PA during a summer 1999 episode. J Expo Anal Environ Epidemiol 2005; 15: 439–457.

    Article  CAS  Google Scholar 

  31. Holgate ST, Samet JM, Koren HS, Maynard RL (eds.). Air Pollution and Health–. Academic Press. 1999.

    Google Scholar 

  32. Zou B, Wilson JG, Zhan FB, Zeng Y . Air pollution exposure assessment methods utilized in epidemiological studies. J Environ Monit 2009; 11: 475–490.

    Article  CAS  Google Scholar 

  33. Baxter L, Burke J, Lunden M, Turpin B, Rich DQ, Thevenet-Morrison K et al. Influence of human activity patterns, particle composition, and residential air exchange rates on modeled distributions of PM2.5 exposure compared to central-site monitoring data. J Expo Sci Environ Epidemiol 2013 e-pub ahead of print doi:10.1038/jes.2012.118.

  34. Beevers SD, Mitsakou C, Williams ML, Kelly F, Anderson HR, Carslaw DC . On the use of dispersion models for human exposure predictions in London. J Expo Sci Environ Epidemiol 2013 e-pub ahead of print doi:10.1038/jes.2013.6.

  35. Dionisio KL, Isakov V, Baxter L, Sarnat JA, Sarnat SE, Burke J et al. Comparison of modeling approaches for exposure assessment of multiple air pollutants in Atlanta, Georgia. J Expo Sci Environ Epidemiol 2013 (submitted).

  36. Hodas N, Turpin B, Lunden M, Baxter L, Özkaynak H, Burke J et al. Comparison of refined exposure surrogates when estimating the risk of myocardial infarction associated with acute increase in PM2.5 concentrations. J Expo Sci Environ Epidemiol 2013 (submitted).

  37. Jones R, Özkaynak H, Nayak S, Garcia V, Hwang S-A, Linn S . Associations between summertime ambient pollutants and respiratory morbidity in NYC: comparison of ambient concentrations versus predicted exposures. J Expo Sci Environ Epidemiol 2013 (submitted).

  38. Kumar N, Liang D, Abrams T, Comellas A . A hybrid methodology for developing ambient PM2.5 exposure for epidemiological studies. J Expo Sci Environ Epidemiol 2013 (submitted).

  39. Mannshardt E, Sucic K, Fuentes M, Reich B, Frey C, Jiao W . Comparing exposure metrics for the effects of speciated particulate matter on population health outcomes. J Expo Sci Environ Epidemiol 2013 (submitted).

  40. Baxter L, Dionisio K, Burke J, Özkaynak H, Rich D, Sarnat J et al. Air pollution exposure prediction approaches used in air pollution epidemiology studies: key findings and future recommendations. J Expo Sci Environ Epidemiol 2013 (submitted).

  41. Sarnat SE, Sarnat JA, Mulholland J, Isakov V, Özkaynak H, Chang H et al. Application of alternative spatiotemporal metrics of ambient air pollution exposure in a time-series epidemiological study in Atlanta. J Expo Sci Environ Epidemiol 2013 (submitted).

  42. Sarnat JA, Sarnat SE, Change H, Mulholland J, Özkaynak H, Isakov V . Spatiotemporally-resolved air exchange rate as a modifier of acute air pollution related morbidity. J Expo Sci Environ Epidemiol 2013 (submitted).

  43. Health Effects Institute. Traffic-Related Air Pollution: A critical review of the literature on emissions, exposure, and health effects. Health Effects Institute 2010.

  44. Hoek G, Beelen R, Hoogh KD, Vienneau D, Gulliver J, Fischer P et al. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environ 2008; 42: 7561–7578.

    Article  CAS  Google Scholar 

  45. Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T et al. A review and evaluation of intraurban air pollution exposure models. J Expo Anal Environ Epidemiol 2005; 15: 185–204.

    Article  CAS  Google Scholar 

  46. Basagana X, Rivera M, Aguilera I, Agis D, Bouso L, Elosua R et al. Effect of the number of measurement sites on land use regression models in estimating local air pollution. Atmospheric Environ 2012; 54: 634–642.

    Article  CAS  Google Scholar 

  47. Johnson M, Isakov V, Touma JS, Mukerjee S, Özkaynak H . Evaluation of land-use regression models used to predict air quality concentrations in an urban area. Atmospheric Environ 2010; 44: 3660–3668.

    Article  CAS  Google Scholar 

  48. Wang M, Beelen R, Eeftens M, Meliefste K, Hoek G, Brunekreef B . Systematic evaluation of land use regression models for NO2 . Environ Sci Technol 2012; 46: 4481–4489.

    Article  CAS  Google Scholar 

  49. Boldo E, Linares C, Lumbreras J, Borge R, Narros A, Garcia-Perez J et al. Health impact assessment of a reduction in ambient PM2.5 levels in Spain. Environ Int 2011; 37: 342–348.

    Article  Google Scholar 

  50. Gauderman WJ, Vora H, McConnell R, Berhane K, Gilliland F, Thomas D et al. Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study. Lancet 2007; 369: 571–577.

    Article  Google Scholar 

  51. McConnell R, Berhane K, Yao L, Jerrett M, Lurmann F, Gilliland F et al. Traffic, susceptibility, and childhood asthma. Environ Health Perspec 2006; 114: 766–772.

    Article  CAS  Google Scholar 

  52. McConnell R, Islam T, Shankardass K, Jerrett M, Lurmann F, Gilliland F et al. Childhood incident asthma and traffic-related air pollution at home and school. Environ Health Perspect 2010; 118: 1021–1026.

    Article  CAS  Google Scholar 

  53. Bravo MA, Fuentes M, Zhang Y, Burr MJ, Bell ML . Comparison of exposure estimation methods for air pollutants: ambient monitoring data and regional air quality simulation. Environ Res 2012; 116: 1–10.

    Article  CAS  Google Scholar 

  54. Hoek G, Fischer P, Brandt PVD, Goldbohm S, Brunekreef B . Estimation of long-term average exposure to outdoor air pollution for a cohort study on mortality. J Expo Anal Environ Epidemiol 2001; 11: 459–469.

    Article  CAS  Google Scholar 

  55. Metzger KB, Tolbert PE, Klein M, Peel JL, Flanders WD, Todd K et al. Ambient air pollution and cardiovascular emergency department visits. Epidemiology 2004; 15: 46–56.

    Article  Google Scholar 

  56. Choi J, Fuentes M, Reich BJ . Spatial-temporal association between fine particulate matter and daily mortality. Comput Stat Data Anal 2009; 53: 2989–3000.

    Article  Google Scholar 

  57. Crooks JL, Özkaynak H . Simultaneous statistical bias correction of multiple PM2.5 species from a regional photochemical grid model. Environ Ecol Stat 2013 (submitted).

  58. Fuentes M, Raftery AE . Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 2005; 61: 36–45.

    Article  Google Scholar 

  59. Lindstrom J, Szpiro AA, Sampson PD, Sheppard L, Oron A, Richards M et al. A flexible spatio-temporal model for air pollution: allowing for spatio-temporal covariates. Univ Washington Biostat, Working Paper Series 2011; 370.

  60. McMillan NJ, Holland DM, Morara M, Feng J . Combining numerical model output and particulate data using Bayesian space-time modeling. Environmetrics 2010; 21: 48–65.

    Google Scholar 

  61. Nazelle AD, Arunachalam S, Serre ML . Bayesian maximum entropy Integration of ozone observations and model predictions: an application for attainment demonstration in North Carolina. Environ Sci Technol 2010; 44: 5707–5713.

    Article  Google Scholar 

  62. Sampson PD, Szpiro AA, Sheppard L, Lindstrom J, Kaufman JD . Pragmatic estimation of a spatio-temporal air quality model with irregular monitoring data. Atmospheric Environ 2011; 45: 6593–6606.

    Article  CAS  Google Scholar 

  63. Yu HL, Chen JC, Christakos G, Jerret MBME . estimation of residential exposure to ambient PM10 and ozone at multiple time scales. Environ Health Perspect 2009; 117: 537–544.

    Article  CAS  Google Scholar 

  64. Henderson SB, Brauer M, MacNab YC, Kennedy SM . Three measures of forest fire smoke exposure and their associations with respiratory and cardiovascular health outcomes in a population-based cohort. Environ Health Perspect 2011; 119: 1266–1271.

    Article  CAS  Google Scholar 

  65. Hystad P, Demers PA, Johnson KC, Brook J, Donkelaar AV, Lamsal L et al. Spatiotemporal air pollution exposure assessment for a Canadian population-based lung cancer case-control study. Environ Health 2012; 11: 1–22.

    Article  Google Scholar 

  66. Johnston FH, Henderson SB, Chen Y, Randerson JT, Marlier M, DeFries RS et al. Estimated global mortality attributable to smoke from landscape fires. Environ Health Perspect 2012; 120: 695–701.

    Article  Google Scholar 

  67. Kloog I, Koutrakis P, Coull BA, Lee HJ, Schwartz J . Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmospheric Environ 2011; 45: 6267–6275.

    Article  CAS  Google Scholar 

  68. U.S. EPA. Total Risk Integrated Methodology (TRIM) Air Pollutants Exposure Model Documentation (TRIM.Expo/APEX, Version 4.5), Volume I: User's Guide 2012.

  69. Berrocal VJ, Gelfand AE, Holland DM, Burke J, Miranda ML . On the use of a PM2.5 exposure simulator to explain birthweight. Environmentrics 2011; 22: 553–571.

    Article  Google Scholar 

  70. Chang HH, Fuentes MM, Frey HC . Time series analysis of personal exposure to ambient air pollution and mortality using an exposure simulator. J Expo Sci Environ Epidemiol 2012; 22: 483–488.

    Article  Google Scholar 

  71. Holloman CH, Bortnick SM, Morara M, Strauss WJ, Calder CA . A Bayesian hierarchical approach for relating PM2.5 exposure to cardiovascular mortality in North Carolina. Environ Health Perspect 2004; 112: 1281–1288.

    Article  Google Scholar 

  72. Zeger SL, Thomas D, Dominici F, Samet JM, Schwartz J, Dockery D et al. Exposure measurement error in time-series studies of air pollution: Concepts and consequences. Environ Health Perspect 2000; 108: 419–426.

    Article  CAS  Google Scholar 

  73. Rothman KJ . Epidemiology: An Introduction. Oxford University Press: USA. 2002.

    Google Scholar 

  74. Özkaynak H, Isakov V, Sarnat S, Sarnat J, Mulholland J . Examination of different exposure metrics in an epidemiological study. Air Waste Manag Assoc Mag Environ Manag 2011, 22–27.

  75. Ebelt ST, Petkau AJ, Vedal S, Fisher TV, Brauer M . Exposure of chronic obstructive pulmonary disease patients to particulate matter: relationships between personal and ambient air concentrations. J Air Waste Manag Assoc 2000; 50: 1081–1094.

    Article  CAS  Google Scholar 

  76. Janssen NA, Hoek G, Harssema H, Brunekreef B . Childhood exposure to PM10: relation between personal, classroom, and outdoor concentrations. Occup Environ Med 1997; 54: 888–894.

    Article  CAS  Google Scholar 

  77. Özkaynak H, Xue J, Spengler JD, Wallace L, Pellizzari E, Jenkins P . Personal exposure to airborne particles and metals: results from the Particles Team Study in Riverside, California. J Expo Anal Environ Epidemiol 1996; 6: 57–78.

    Google Scholar 

  78. Gauvin S, Le Mollec Y, Bremont F, Momas I, Balducci F, Ciocnard F et al. Relationship between nitrogen dioxide personal exposure and ambient air monitoring measurements among children in three French metropolitan areas: VESTA study. Arch Environ Health 2001; 56: 336–341.

    Article  CAS  Google Scholar 

  79. Suh HH, Zanobetti A . Exposure error masks the relationship between traffic-related air pollution and heart rate variability. J Occup Environ Med 2010; 52: 685–692.

    Article  CAS  Google Scholar 

  80. Sheppard L, Burnett RT, Szpiro AA, Kim S-Y, Jerrett M, Pope CA et al. Confounding and exposure measurement error in air pollution epidemiology. Air Qual Atmos Health 2012; 5: 203–216.

    Article  Google Scholar 

  81. Szpiro AA, Paciorek CJ, Sheppard L . Does more accurate exposure prediction necessarily improve health effect estimates? Epidemiology 2011; 22: 680–685.

    Article  Google Scholar 

  82. Özkaynak H, Frey HC, Burke J, Pinder RW . Analysis of coupled model uncertainties in source-to-dose modeling of human exposures to ambient air pollution: a PM2.5 case study. Atmospheric Environ 2009; 43: 1641–1649.

    Article  Google Scholar 

Download references

Acknowledgements

The United States Environmental Protection Agency through its Office of Research and Development funded and collaborated in the research described here under Cooperative Agreements: CR-83407201-1, CR-83407-301-1, and CR-83407-401-0 with Rutgers University, Emory University, and University of Washington, respectively. It has been subjected to Agency review and approved for publication. It may not necessarily reflect official Agency policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halûk Özkaynak.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özkaynak, H., Baxter, L., Dionisio, K. et al. Air pollution exposure prediction approaches used in air pollution epidemiology studies. J Expo Sci Environ Epidemiol 23, 566–572 (2013). https://doi.org/10.1038/jes.2013.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2013.15

Keywords

This article is cited by

Search

Quick links