Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Reduced retinal transduction and enhanced transgene-directed immunogenicity with intravitreal delivery of rAAV following posterior vitrectomy in dogs

Abstract

Adeno-associated virus (AAV) vector-based gene therapy is a promising treatment strategy for delivery of neurotrophic transgenes to retinal ganglion cells (RGCs) in glaucoma patients. Retinal distribution of transgene expression following intravitreal injection (IVT) of AAV is variable in animal models and the vitreous humor may represent a barrier to initial vector penetration. The primary goal of our study was to investigate the effect of prior core vitrectomy with posterior hyaloid membrane peeling on pattern and efficiency of transduction of a capsid amino acid substituted AAV2 vector, carrying the green fluorescent protein (GFP) reporter transgene following IVT in dogs. When progressive intraocular inflammation developed starting 4 weeks post IVT, the study plan was modified to allow detailed characterization of the etiology as a secondary goal. Unexpectedly, surgical vitrectomy was found to significantly limit transduction, whereas in non-vitrectomized eyes transduction efficiency reached upwards to 37.3% of RGC layer cells. The developing retinitis was characterized by mononuclear cell infiltrates resulting from a delayed-type hypersensitivity reaction, which we suspect was directed at the GFP transgene. Our results, in a canine large animal model, support caution when considering surgical vitrectomy before IVT for retinal gene therapy in patients, as prior vitrectomy appears to significantly reduce transduction efficiency and may predispose the patient to development of vector-induced immune reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Chader GJ . Advances in glaucoma treatment and management: neurotrophic agents. Invest Ophthalmol Vis Sci 2012; 53: 2501–2505.

    Article  CAS  PubMed  Google Scholar 

  2. Hellstrom M, Pollett MA, Harvey AR . Post-injury delivery of rAAV2-CNTF combined with short-term pharmacotherapy is neuroprotective and promotes extensive axonal regeneration after optic nerve trauma. J Neurotrauma 2011; 28: 2475–2483.

    Article  PubMed  Google Scholar 

  3. van Adel BA, Kostic C, Deglon N, Ball AK, Arsenijevic Y . Delivery of ciliary neurotrophic factor via lentiviral-mediated transfer protects axotomized retinal ganglion cells for an extended period of time. Hum Gene Ther 2003; 14: 103–115.

    Article  CAS  PubMed  Google Scholar 

  4. Hellstrom M, Harvey AR . Retinal ganglion cell gene therapy and visual system repair. Curr Gene Ther 2011; 11: 116–131.

    Article  CAS  PubMed  Google Scholar 

  5. Harvey AR, Hellström M, Rodger J . Gene therapy and transplantation in the retinofugal pathway. Prog Brain Res 2009; 175: 151–161.

    Article  CAS  PubMed  Google Scholar 

  6. Kuno N, Fujii S . Biodegradable intraocular therapies for retinal disorders: progress to date. Drugs Aging 2010; 27: 117–134.

    Article  CAS  PubMed  Google Scholar 

  7. Wilson AM, Di Polo A . Gene therapy for retinal ganglion cell neuroprotection in glaucoma. Gene Therapy 2012; 19: 127–136.

    Article  CAS  PubMed  Google Scholar 

  8. Kwong JMK, Gu L, Nassiri N, Bekerman V, Kumar-Singh R, Rhee KD et al. AAV-mediated and pharmacological induction of Hsp70 expression stimulates survival of retinal ganglion cells following axonal injury. Gene Therapy 2015; 22: 138–145.

    Article  CAS  PubMed  Google Scholar 

  9. Yin L, Greenberg K, Hunter JJ, Dalkara D, Kolstad KD, Masella BD et al. Intravitreal injection of AAV2 transduces macaque inner retina. Invest Ophthalmol Vis Sci 2011; 52: 2775–2783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mowat FM, Gornik KR, Dinculescu A, Boye SL, Hauswirth WW, Petersen-Jones SM et al. Tyrosine capsid-mutant AAV vectors for gene delivery to the canine retina from a subretinal or intravitreal approach. Gene Therapy 2014; 21: 96–105.

    Article  CAS  PubMed  Google Scholar 

  11. Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 2013; 5: 189ra76.

    Article  PubMed  Google Scholar 

  12. Boyd RF, Sledge DG, Boye SL, Boye SE, Hauswirth WW, Komaromy AM et al. Photoreceptor-targeted gene delivery using intravitreally administered AAV vectors in dogs. Gene Therapy 2015; 23: 223–230.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gao G, Wang Q, Calcedo R, Mays L, Bell P, Wang L et al. Adeno-associated virus-mediated gene transfer to nonhuman primate liver can elicit destructive transgene-specific T cell responses. Hum Gene Ther 2009; 20: 930–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Willett K, Bennett J . Immunology of AAV-mediated gene transfer in the eye. Front Immunol 2013; 4: 261.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Minella AL, Mowat FM, Willett KL, Sledge D, Bartoe JT, Bennett J et al. Differential targeting of feline photoreceptors by recombinant adeno-associated viral vectors: implications for preclinical gene therapy trials. Gene Therapy 2014; 21: 913–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beltran WA, Boye SL, Boye SE, Chiodo VA, Lewin AS, Hauswirth WW et al. rAAV2/5 gene-targeting to rods:dose-dependent efficiency and complications associated with different promoters. Gene Therapy 2010; 17: 1162–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mays LE, Wilson JM . The complex and evolving story of T cell activation to AAV vector-encoded transgene products. Mol Ther 2011; 19: 16–27.

    Article  CAS  PubMed  Google Scholar 

  18. Wilson JM . Autoimmunity, recessive diseases, and gene replacement therapy. Mol Ther 2010; 18: 2045–2047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 2012; 130: 9–24.

    Article  CAS  PubMed  Google Scholar 

  20. Petrs-Silva H, Dinculescu A, Li Q, Deng WT, Pang JJ, Min SH et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 2011; 19: 293–301.

    Article  CAS  PubMed  Google Scholar 

  21. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.

    Article  CAS  PubMed  Google Scholar 

  22. Kim H, Lizak MJ, Tansey G, Csaky KG, Robinson MR, Yuan P et al. Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging. Ann Biomed Eng 2005; 33: 150–164.

    Article  PubMed  Google Scholar 

  23. Zhong L, Li B, Jayandharan G, Mah CS, Govindasamy L, Agbandje-McKenna M et al. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology 2008; 381: 194–202.

    Article  CAS  PubMed  Google Scholar 

  24. Gabriel N, Hareendran S, Sen D, Gadkari RA, Sudha G, Selot R et al. Bioengineering of AAV2 capsid at specific serine, threonine, or lysine residues improves its transduction efficiency in vitro and in vivo. Hum Gene Ther Methods 2013; 24: 80–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vandenberghe LH, Bell P, Maguire AM, Cearley CN, Xiao R, Calcedo R et al. Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med 2011; 3: 88ra54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Q, Miller R, Han PY, Pang J, Dinculescu A, Chiodo V et al. Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis 2008; 14: 1760–1769.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bell P, Gao G, Haskins ME, Wang L, Sleeper M, Wang H et al. Evaluation of adeno-associated viral vectors for liver-directed gene transfer in dogs. Hum Gene Ther 2011; 22: 985–997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Streilein JW . Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation. J Leukoc Biol 2003; 74: 179–185.

    Article  CAS  PubMed  Google Scholar 

  29. Streilein JW . Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 2003; 3: 879–889.

    Article  CAS  PubMed  Google Scholar 

  30. Ohta K, Yamagami S, Taylor AW, Streilein JW . IL-6 antagonizes TGF-beta and abolishes immune privilege in eyes with endotoxin-induced uveitis. Invest Ophthalmol Vis Sci 2000; 41: 2591–2599.

    CAS  PubMed  Google Scholar 

  31. Saban DR, Elder IA, Nguyen CQ, Smith WC, Timmers AM, Grant MB et al. Characterization of intraocular immunopathology following intracameral inoculation with alloantigen. Mol Vis 2008; 14: 615–624.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilbanks GA, Streilein JW . Macrophages capable of inducing anterior chamber associated immune deviation demonstrate spleen-seeking migratory properties. Reg Immunol 1992; 4: 130–137.

    CAS  PubMed  Google Scholar 

  33. Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, Fraites TJ Jr et al. Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 2002; 28: 158–167.

    Article  CAS  PubMed  Google Scholar 

  34. Kay CN, Ryals RC, Aslanidi GV, Min SH, Ruan Q, Sun J et al. Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors. PLoS One 2013; 8: e62097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aslanidi GV, Rivers AE, Ortiz L, Song L, Ling C, Govindasamy L et al. Optimization of the capsid of recombinant adeno-associated virus 2 (AAV2) vectors: the final threshold? PLoS One 2013; 8: e59142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gearhart PM, Gearhart C, Thompson DA, Petersen-Jones SM . Improvement of visual performance with intravitreal administration of 9-cis-retinal in Rpe65-mutant dogs. Arch Ophthalmol 2010; 128: 1442–1448.

    Article  CAS  PubMed  Google Scholar 

  37. Boye SE, Alexander JJ, Boye SL, Witherspoon CD, Sandefer KJ, Conlon TJ et al. The human rhodopsin kinase promoter in an AAV5 vector confers rod- and cone-specific expression in the primate retina. Hum Gene Ther 2012; 23: 1101–1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O'Boyle NJ, Contreras GA, Mattmiller SA, Sordillo LM . Changes in glucose transporter expression in monocytes of periparturient dairy cows. J Dairy Sci 2012; 95: 5709–5719.

    Article  CAS  PubMed  Google Scholar 

  39. Hernandez YJ, Wang J, Kearns WG, Loiler S, Poirier A, Flotte TR . Latent adeno-associated virus infection elicits humoral but not cell-mediated immune responses in a nonhuman primate model. J Virol 1999; 73: 8549–8558.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brantly ML, Spencer LT, Humphries M, Conlon TJ, Spencer CT, Poirier A et al. Phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 alphal-antitrypsin (AAT) vector in AAT-deficient adults. Hum Gene Ther 2006; 17: 1177–1186.

    Article  CAS  PubMed  Google Scholar 

  41. Mowat FM, Breuwer AR, Bartoe JT, Annear MJ, Zhang Z, Smith AJ et al. RPE65 gene therapy slows cone loss in Rpe65-deficient dogs. Gene Therapy 2012; 20: 545–555.

    Article  PubMed  Google Scholar 

  42. Conlon TJ, Deng WT, Erger K, Cossette T, Pang JJ, Ryals R et al. Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa. Hum Gene Ther Clin Dev 2013; 24: 23–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Janice Querbin and Kristin Koehl for animal care assistance, Laurence Occelli for imaging assistance and the laboratory of Lorraine Sordillo for PBMC collection. We also thank Cheryl Craft for hCAR antibody production, Jingfen Sun for performing NAb assays as well as Vince Chiodo and the Retinal Gene Therapy Vector lab for AAV purification. JTB and RFB acknowledge the following funding source: American College of Veterinary Ophthalmologists Vision for Animals Foundation. SLB, SEB, WWH and AMK acknowledge the following funding source: Foundation Fighting Blindness and an unrestricted grant to the UF Department of Ophthalmology from Research to Prevent Blindness. SEB acknowledges the following funding source: NIH Grant R01 EY024280. SEB, SLB and WWH acknowledge funding support from NIH Grant P30EY021721. AMK acknowledges the following funding source: NIH Grant R01 EY019304. SMP-J acknowledges the following funding source: Myers-Dunlap Endowment for Canine Health. WWH acknowledges the following funding sources: NIH grants R01 EY017549, R24 EY022023, and R24 EY022012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Petersen-Jones.

Ethics declarations

Competing interests

WWH and the University of Florida have a financial interest in the use of AAV therapies and own equity in a company (AGTC Inc.) that might, in the future, commercialize some aspects of this work. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyd, R., Boye, S., Conlon, T. et al. Reduced retinal transduction and enhanced transgene-directed immunogenicity with intravitreal delivery of rAAV following posterior vitrectomy in dogs. Gene Ther 23, 548–556 (2016). https://doi.org/10.1038/gt.2016.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.31

This article is cited by

Search

Quick links