Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Efficient entry inhibition of human and nonhuman primate immunodeficiency virus by cell surface-expressed gp41-derived peptides

Abstract

Membrane-anchored C-peptides (for example, maC46) derived from human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41 effectively inhibit HIV-1 entry in cell lines and primary human CD4+ cells in vitro. Here we evaluated this gene therapy approach in animal models of AIDS. We adapted the HIV gp41-derived maC46 vector construct for use in rhesus monkeys. Simian immunodeficiency virus (SIV and SHIV) sequence-adapted maC46 peptides, and the original HIV-1-derived maC46 expressed on the surface of established cell lines blocked entry of HIV-1, SIVmac251 and SHIV89.6P. Furthermore, primary rhesus monkey CD4+ T cells expressing HIV sequence-based maC46 peptides were also protected from SIV entry. Depletion of CD8+ T cells from PBMCs enhanced the yield of maC46-transduced CD4+ T cells. Supplementation with interleukin-2 (IL-2) increased transduction efficiency, whereas IL-7 and/or IL-15 provided no additional benefit. Phenotypic analysis showed that maC46-transduced and expanded cells were predominantly central memory CD4+ T cells that expressed low levels of CCR5 and slightly elevated levels of CD62L, β7-integrin and CXCR4. These findings show that maC46-based cell surface-expressed peptides can efficiently inhibit primate immunodeficiency virus infection, and therefore serve as the basis for evaluation of this gene therapy approach in an animal model for AIDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Puls RL, Emery S . Therapeutic vaccination against HIV: current progress and future possibilities. Clin Sci 2006; 110: 59–71.

    Article  CAS  Google Scholar 

  2. von Laer D, Hasselmann S, Hasselmann K . Gene therapy for HIV infection: what does it need to make it work? J Gene Med 2006; 8: 658–667.

    Article  CAS  PubMed  Google Scholar 

  3. Strayer DS, Akkina R, Bunnell BA, Dropulic B, Planelles V, Pomerantz RJ et al. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther 2005; 11: 823–842.

    Article  CAS  PubMed  Google Scholar 

  4. von Laer D, Hasselmann S, Hasselmann K . Impact of gene-modified T cells on HIV infection dynamics. J Theor Biol 2006; 238: 60–77.

    Article  CAS  PubMed  Google Scholar 

  5. Gallo SA, Finnegan CM, Viard M, Raviv Y, Dimitrov A, Rawat SS et al. The HIV Env-mediated fusion reaction. Biochim Biophys Acta 2003; 1614: 36–50.

    Article  CAS  PubMed  Google Scholar 

  6. Poveda E, Briz V, Soriano V . Enfuvirtide, the first fusion inhibitor to treat HIV infection. AIDS Rev 2005; 7: 139–147.

    PubMed  Google Scholar 

  7. Baldwin C, Berkhout B . HIV-1 drug-resistance and drug-dependence. Retrovirology 2007; 4: 78.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hildinger M, Dittmar MT, Schult-Dietrich P, Fehse B, Schnierle BS, Thaler S et al. Membrane-anchored peptide inhibits human immunodeficiency virus entry. J Virol 2001; 75: 3038–3042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Egelhofer M, Brandenburg G, Martinius H, Schult-Dietrich P, Melikyan G, Kunert R et al. Inhibition of human immunodeficiency virus type 1 entry in cells expressing gp41-derived peptides. J Virol 2004; 78: 568–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lohrengel S, Hermann F, Hagmann I, Oberwinkler H, Scrivano L, Hoffmann C et al. Determinants of human immunodeficiency virus type 1 resistance to membrane-anchored gp41-derived peptides. J Virol 2005; 79: 10237–10246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van Lunzen J, Glaunsinger T, Stahmer I, von Baehr V, Baum C, Schilz A et al. Transfer of autologous gene-modified T cells in HIV-infected patients with advanced immunodeficiency and drug-resistant virus. Mol Ther 2007; 15: 1024–1033.

    Article  CAS  PubMed  Google Scholar 

  12. Kim EY, Busch M, Abel K, Fritts L, Bustamante P, Stanton J et al. Retroviral recombination in vivo: viral replication patterns and genetic structure of simian immunodeficiency virus (SIV) populations in rhesus macaques after simultaneous or sequential intravaginal inoculation with SIVmac239Deltavpx/Deltavpr and SIVmac239Deltanef. J Virol 2005; 79: 4886–4895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Root MJ, Kay MS, Kim PS . Protein design of an HIV-1 entry inhibitor. Science 2001; 291: 884–888.

    Article  CAS  PubMed  Google Scholar 

  14. Chan DC, Fass D, Berger JM, Kim PS . Core structure of gp41 from the HIV envelope glycoprotein. Cell 1997; 89: 263–273.

    Article  CAS  PubMed  Google Scholar 

  15. Marti DN, Bjelic S, Lu M, Bosshard HR, Jelesarov I . Fast folding of the HIV-1 and SIV gp41 six-helix bundles. J Mol Biol 2004; 336: 1–8.

    Article  CAS  PubMed  Google Scholar 

  16. Hildinger M, Abel KL, Ostertag W, Baum C . Design of 5′ untranslated sequences in retroviral vectors developed for medical use. J Virol 1999; 73: 4083–4089.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bauer G, Valdez P, Kearns K, Bahner I, Wen SF, Zaia JA et al. Inhibition of human immunodeficiency virus-1 (HIV-1) replication after transduction of granulocyte colony-stimulating factor-mobilized CD34+ cells from HIV-1-infected donors using retroviral vectors containing anti-HIV-1 genes. Blood 1997; 89: 2259–2267.

    CAS  PubMed  Google Scholar 

  18. Schambach A, Wodrich H, Hildinger M, Bohne J, Krausslich HG, Baum C . Context dependence of different modules for posttranscriptional enhancement of gene expression from retroviral vectors. Mol Ther 2000; 2: 435–445.

    Article  CAS  PubMed  Google Scholar 

  19. Zufferey R, Donello JE, Trono D, Hope TJ . Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73: 2886–2892.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gustchina E, Hummer G, Bewley CA, Clore GM . Differential inhibition of HIV-1 and SIV envelope-mediated cell fusion by C34 peptides derived from the C-terminal heptad repeat of gp41 from diverse strains of HIV-1, HIV-2, and SIV. J Med Chem 2005; 48: 3036–3044.

    Article  CAS  PubMed  Google Scholar 

  21. Pitcher CJ, Hagen SI, Walker JM, Lum R, Mitchell BL, Maino VC et al. Development and homeostasis of T cell memory in rhesus macaque. J Immunol 2002; 168: 29–43.

    Article  CAS  PubMed  Google Scholar 

  22. Pene J, Rahmoun M, Temmerman S, Yssel H . Use of anti-CD3/CD28 mAb coupled magnetic beads permitting subsequent phenotypic analysis of activated human T cells by indirect immunofluorescence. J Immunol Methods 2003; 283: 59–66.

    Article  CAS  PubMed  Google Scholar 

  23. Onlamoon N, Hudson K, Bryan P, Mayne AE, Bonyhadi M, Berenson R et al. Optimization of in vitro expansion of macaque CD4 T cells using anti-CD3 and co-stimulation for autotransfusion therapy. J Med Primatol 2006; 35: 178–193.

    Article  CAS  PubMed  Google Scholar 

  24. Ma A, Koka R, Burkett P . Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 2006; 24: 657–679.

    Article  CAS  PubMed  Google Scholar 

  25. Geginat J, Sallusto F, Lanzavecchia A . Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells. J Exp Med 2001; 194: 1711–1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu P, Chertova E, Bess Jr J, Lifson JD, Arthur LO, Liu J et al. Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc Natl Acad Sci USA 2003; 100: 15812–15817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu P, Liu J, Bess Jr J, Chertova E, Lifson JD, Grise H et al. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 2006; 441: 847–852.

    Article  CAS  PubMed  Google Scholar 

  28. Malashkevich VN, Chan DC, Chutkowski CT, Kim PS . Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc Natl Acad Sci USA 1998; 95: 9134–9139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mo H, Konstantinidis AK, Stewart KD, Dekhtyar T, Ng T, Swift K et al. Conserved residues in the coiled-coil pocket of human immunodeficiency virus type 1 gp41 are essential for viral replication and interhelical interaction. Virology 2004; 329: 319–327.

    Article  CAS  PubMed  Google Scholar 

  30. Dong XN, Xiao Y, Dierich MP, Chen YH . N- and C-domains of HIV-1 gp41: mutation, structure and functions. Immunol Lett 2001; 75: 215–220.

    Article  CAS  PubMed  Google Scholar 

  31. Gallo SA, Sackett K, Rawat SS, Shai Y, Blumenthal R . The stability of the intact envelope glycoproteins is a major determinant of sensitivity of HIV/SIV to peptidic fusion inhibitors. J Mol Biol 2004; 340: 9–14.

    Article  CAS  PubMed  Google Scholar 

  32. Melikyan GB, Egelhofer M, von Laer D . Membrane-anchored inhibitory peptides capture human immunodeficiency virus type 1 gp41 conformations that engage the target membrane prior to fusion. J Virol 2006; 80: 3249–3258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Levine BL, Bernstein WB, Aronson NE, Schlienger K, Cotte J, Perfetto S et al. Adoptive transfer of costimulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat Med 2002; 8: 47–53.

    Article  CAS  PubMed  Google Scholar 

  34. Villinger F, Brice GT, Mayne AE, Bostik P, Mori K, June CH et al. Adoptive transfer of simian immunodeficiency virus (SIV) naive autologous CD4+ cells to macaques chronically infected with SIV is sufficient to induce long-term nonprogressor status. Blood 2002; 99: 590–599.

    Article  CAS  PubMed  Google Scholar 

  35. Aker M, Tubb J, Groth AC, Bukovsky AA, Bell AC, Felsenfeld G et al. Extended core sequences from the cHS4 insulator are necessary for protecting retroviral vectors from silencing position effects. Hum Gene Ther 2007; 18: 333–343.

    Article  CAS  PubMed  Google Scholar 

  36. Yannaki E, Tubb J, Aker M, Stamatoyannopoulos G, Emery DW . Topological constraints governing the use of the chicken HS4 chromatin insulator in oncoretrovirus vectors. Mol Ther 2002; 5: 589–598.

    Article  CAS  PubMed  Google Scholar 

  37. Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G . A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc Natl Acad Sci USA 2000; 97: 9150–9155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mok HP, Javed S, Lever A . Stable gene expression occurs from a minority of integrated HIV-1-based vectors: transcriptional silencing is present in the majority. Gene Therapy 2007; 14: 741–751.

    Article  CAS  PubMed  Google Scholar 

  39. Schambach A, Schiedlmeier B, Kuhlcke K, Verstegen M, Margison GP, Li Z et al. Towards hematopoietic stem cell-mediated protection against infection with human immunodeficiency virus. Gene Therapy 2006; 13: 1037–1047.

    Article  CAS  PubMed  Google Scholar 

  40. Institute of Laboratory Animal Resources (US). Guide for the Care and Use of Laboratory Animals, Vol. xii. National Academy Press: Washington DC, 1996, 125pp.

  41. Daniel MD, Letvin NL, King NW, Kannagi M, Sehgal PK, Hunt RD et al. Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. Science 1985; 228: 1201–1204.

    Article  CAS  PubMed  Google Scholar 

  42. Reimann KA, Li JT, Voss G, Lekutis C, Tenner-Racz K, Racz P et al. An env gene derived from a primary human immunodeficiency virus type 1 isolate confers high in vivo replicative capacity to a chimeric simian/human immunodeficiency virus in rhesus monkeys. J Virol 1996; 70: 3198–3206.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Collman R, Balliet JW, Gregory SA, Friedman H, Kolson DL, Nathanson N et al. An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1. J Virol 1992; 66: 7517–7521.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A et al. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 1986; 59: 284–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Clapham PR, McKnight A, Weiss RA . Human immunodeficiency virus type 2 infection and fusion of CD4-negative human cell lines: induction and enhancement by soluble CD4. J Virol 1992; 66: 3531–3537.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lusso P, Cocchi F, Balotta C, Markham PD, Louie A, Farci P et al. Growth of macrophage-tropic and primary human immunodeficiency virus type 1 (HIV-1) isolates in a unique CD4+ T-cell clone (PM1): failure to downregulate CD4 and to interfere with cell-line-tropic HIV-1. J Virol 1995; 69: 3712–3720.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Grignani F, Kinsella T, Mencarelli A, Valtieri M, Riganelli D, Grignani F et al. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res 1998; 58: 14–19.

    CAS  PubMed  Google Scholar 

  48. Yee JK, Friedmann T, Burns JC . Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol 1994; 43: 99–112.

    Article  CAS  PubMed  Google Scholar 

  49. He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S et al. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 1997; 385: 645–649.

    Article  CAS  PubMed  Google Scholar 

  50. Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 2002; 13: 803–813.

    Article  CAS  PubMed  Google Scholar 

  51. Thompson JD, Higgins DG, Gibson TJ . CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Government grant: BMBF TreatID and by the National Institute of Health grants AI060354, AI061797, CA73473 and RR00168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Schmitz.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahn, R., Hermann, F., Kim, EY. et al. Efficient entry inhibition of human and nonhuman primate immunodeficiency virus by cell surface-expressed gp41-derived peptides. Gene Ther 15, 1210–1222 (2008). https://doi.org/10.1038/gt.2008.73

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.73

Keywords

This article is cited by

Search

Quick links