Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Anti-MOG antibodies are under polygenic regulation with the most significant control coming from the C-type lectin-like gene locus

Abstract

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that is genetically complex. There is evidence supporting a role of myelin oligodendrocyte glycoprotein (MOG) humoral immunity in MS. We aimed to determine the genetic regulation of anti-MOG antibodies and their involvement in disease, by using MOG-induced experimental autoimmune encephalomyelitis (EAE) in rat, an animal model that closely mimics human MS. We show polygenic regulation of anti-MOG antibodies in two backcross populations, including a major genetic determinant for antibody expression on chromosome 4, Amig3. We fine-mapped the region to 539 kilobases (kb) consisting of a complex of seven C-type lectin receptor genes (Dcir4, Dcir3, Dcir2, Dcir1, Dcar1, Mcl and Mincle) that was captured in the APLEC congenic strain. We confirmed that Amig3 regulates anti-MOG antibody levels in MOG-EAE, and further showed that immune reactions during initiation of EAE were skewed toward increased numbers of B cells in the EAE-protected APLEC strain, together with higher anti-MOG IgG1 and lower IgG2b levels. Taken together, our data demonstrated complex regulation of the antibody response during EAE and that skewing the antibody response toward Th2 contributed to protection from EAE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Obermeier B, Mentele R, Malotka J, Kellermann J, Kumpfel T, Wekerle H et al. Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nat Med 2008; 14: 688–693.

    Article  CAS  Google Scholar 

  2. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F . Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 2004; 14: 164–174.

    Article  Google Scholar 

  3. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008; 358: 676–688.

    Article  CAS  Google Scholar 

  4. Genain C, Cannella B, Hauser S, Raine C . Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 1999; 5: 170–175.

    Article  CAS  Google Scholar 

  5. Reindl M, Linington C, Brehm U, Egg R, Dilitz E, Deisenhammer F et al. Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 1999; 122: 2047–2056.

    Article  Google Scholar 

  6. Zhou D, Srivastava R, Nessler S, Grummel V, Sommer N, Bruck W et al. Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis. Proc Natl Acad Sci USA 2006; 103: 19057–19062.

    Article  CAS  Google Scholar 

  7. Olsson T . White matter disease: roles of anti-MOG antibodies in demyelinating diseases. Nat Rev Neurol 2011; 7: 248–249.

    Article  CAS  Google Scholar 

  8. Jagodic M, Colacios C, Nohra R, Dejean AS, Beyeen AD, Khademi M et al. A role for VAV1 in experimental autoimmune encephalomyelitis and multiple sclerosis. Sci Transl Med 2009; 1: 10ra21.

    Article  Google Scholar 

  9. Swanberg M, Lidman O, Padyukov L, Eriksson P, Akesson E, Jagodic M et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet 2005; 37: 486–494.

    Article  CAS  Google Scholar 

  10. Olofsson P, Holmberg J, Tordsson J, Lu S, Akerstrom B, Holmdahl R . Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. Nat Genet 2003; 33: 25–32.

    Article  CAS  Google Scholar 

  11. Wicker LS, Clark J, Fraser HI, Garner VE, Gonzalez-Munoz A, Healy B et al. Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun 2005; 25: 29–33.

    Article  CAS  Google Scholar 

  12. Schluesener H, Sobel R, Linington C, Weiner H . A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J Immunol 1987; 139: 4016–4037.

    CAS  PubMed  Google Scholar 

  13. Linington C, Bradl M, Lassmann H, Brunner C, Vass K . Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 1988; 130: 443–497.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Genain C, Nguyen M, Letvin N, Pearl R, Davis R, Adelman M et al. Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate. J Clin Invest 1995; 96: 2966–3040.

    Article  CAS  Google Scholar 

  15. Thessen Hedreul M, Gillett A, Olsson T, Jagodic M, Harris R . Characterization of multiple sclerosis candidate gene expression kinetics in rat experimental autoimmune encephalomyelitis. J Neuroimmunol 2009; 210: 30–39.

    Article  CAS  Google Scholar 

  16. Weissert R, Wallstrom E, Storch MK, Stefferl A, Lorentzen J, Lassmann H et al. MHC haplotype-dependent regulation of MOG-induced EAE in rats. J Clin Invest 1998; 102: 1265–1273.

    Article  CAS  Google Scholar 

  17. Dahlman I, Lorentzen JC, de Graaf KL, Stefferl A, Linington C, Luthman H et al. Quantitative trait loci disposing for both experimental arthritis and encephalomyelitis in the DA rat; impact on severity of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis and antibody isotype pattern. Eur J Immunol 1998; 28: 2188–2196.

    Article  CAS  Google Scholar 

  18. Marta M, Stridh P, Becanovic K, Gillett A, Ockinger J, Lorentzen J et al. Multiple loci comprising immune-related genes regulate experimental neuroinflammation. Genes Immun 2010; 11: 21–57.

    Article  CAS  Google Scholar 

  19. Lorentzen J, Flornes L, Eklöw C, Bäckdahl L, Ribbhammar U, Guo J et al. Association of arthritis with a gene complex encoding C-type lectin-like receptors. Arthritis Rheum 2007; 56: 2620–2652.

    Article  CAS  Google Scholar 

  20. Ribbhammar U, Flornes L, Backdahl L, Luthman H, Fossum S, Lorentzen JC . High resolution mapping of an arthritis susceptibility locus on rat chromosome 4, and characterization of regulated phenotypes. Hum Mol Genet 2003; 12: 2087–2096.

    Article  CAS  Google Scholar 

  21. Amor S, Groome N, Linington C, Morris MM, Dornmair K, Gardinier MV et al. Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 1994; 153: 4349–4356.

    CAS  PubMed  Google Scholar 

  22. Storch MK, Stefferl A, Brehm U, Weissert R, Wallstrom E, Kerschensteiner M et al. Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 1998; 8: 681–694.

    Article  CAS  Google Scholar 

  23. Broman KW, Wu H, Sen S, Churchill GA . R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003; 19: 889–890.

    Article  CAS  Google Scholar 

  24. Haley CS, Knott SA . A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 1992; 69: 315–324.

    Article  CAS  Google Scholar 

  25. Churchill GA, Doerge RW . Empirical threshold values for quantitative trait mapping. Genetics 1994; 138: 963–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Flornes L, Bryceson Y, Spurkland A, Lorentzen J, Dissen E, Fossum S . Identification of lectin-like receptors expressed by antigen presenting cells and neutrophils and their mapping to a novel gene complex. Immunogenetics 2004; 56: 506–523.

    Article  CAS  Google Scholar 

  27. Griffiths MM, Wang J, Joe B, Dracheva S, Kawahito Y, Shepard JS et al. Identification of four new quantitative trait loci regulating arthritis severity and one new quantitative trait locus regulating autoantibody production in rats with collagen-induced arthritis. Arthritis Rheum 2000; 43: 1278–1289.

    Article  CAS  Google Scholar 

  28. Nordquist N, Olofsson P, Vingsbo-Lundberg C, Petterson U, Holmdahl R . Complex genetic control in a rat model for rheumatoid arthritis. J Autoimmun 2000; 15: 425–432.

    Article  CAS  Google Scholar 

  29. Jagodic M, Marta M, Becanovic K, Sheng J, Nohra R, Olsson T et al. Resolution of a 16.8-Mb autoimmunity-regulating rat chromosome 4 region into multiple encephalomyelitis quantitative trait loci and evidence for epistasis. J Immunol 2005; 174: 918–942.

    Article  CAS  Google Scholar 

  30. Mordes JP, Cort L, Norowski E, Leif J, Fuller JM, Lernmark A et al. Analysis of the rat Iddm14 diabetes susceptibility locus in multiple rat strains: identification of a susceptibility haplotype in the Tcrb-V locus. Mamm Genome 2009; 20: 162–169.

    Article  CAS  Google Scholar 

  31. Dahlman I, Lorentzen J, de Graaf K, Stefferl A, Linington C, Luthman H et al. Quantitative trait loci disposing for both experimental arthritis and encephalomyelitis in the DA rat; impact on severity of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis and antibody isotype pattern. Eur J Immunol 1998; 28: 2188–2284.

    Article  CAS  Google Scholar 

  32. Furuya T, Salstrom JL, McCall-Vining S, Cannon GW, Joe B, Remmers EF et al. Genetic dissection of a rat model for rheumatoid arthritis: significant gender influences on autosomal modifier loci. Hum Mol Genet 2000; 9: 2241–2250.

    Article  CAS  Google Scholar 

  33. Darvasi A, Soller M . Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 1995; 141: 1199–1406.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rintisch C, Kelkka T, Norin U, Lorentzen J, Olofsson P, Holmdahl R . Finemapping of the arthritis QTL Pia7 reveals co-localization with Oia2 and the APLEC locus. Genes Immun 2010; 11: 239–284.

    Article  CAS  Google Scholar 

  35. Gracie J, Bradley J . Interleukin-12 induces interferon-gamma-dependent switching of IgG alloantibody subclass. Eur J Immunol 1996; 26: 1217–1238.

    Article  CAS  Google Scholar 

  36. Kanazawa N, Tashiro K, Inaba K, Miyachi Y . Dendritic cell immunoactivating receptor, a novel C-type lectin immunoreceptor, acts as an activating receptor through association with Fc receptor gamma chain. J Biol Chem 2003; 278: 32645–32697.

    Article  CAS  Google Scholar 

  37. Kanazawa N, Okazaki T, Nishimura H, Tashiro K, Inaba K, Miyachi Y . DCIR acts as an inhibitory receptor depending on its immunoreceptor tyrosine-based inhibitory motif. J Invest Dermatol 2002; 118: 261–267.

    Article  CAS  Google Scholar 

  38. Fujikado N, Saijo S, Yonezawa T, Shimamori K, Ishii A, Sugai S et al. Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat Med 2008; 14: 176–180.

    Article  CAS  Google Scholar 

  39. Lyons J-A, Ramsbottom M, Cross A . Critical role of antigen-specific antibody in experimental autoimmune encephalomyelitis induced by recombinant myelin oligodendrocyte glycoprotein. Eur J Immunol 2002; 32: 1905–1918.

    Article  CAS  Google Scholar 

  40. Elliott C, Lindner M, Arthur A, Brennan K, Jarius S, Hussey J et al. Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. Brain 2012; 135: 1819–1833.

    Article  Google Scholar 

  41. Müssener A, Lorentzen J, Kleinau S, Klareskog L . Altered Th1/Th2 balance associated with non-major histocompatibility complex genes in collagen-induced arthritis in resistant and non-resistant rat strains. Eur J Immunol 1997; 27: 695–704.

    Article  Google Scholar 

  42. Olsson T . Critical influences of the cytokine orchestration on the outcome of myelin antigen-specific T-cell autoimmunity in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Rev 1995; 144: 245–268.

    Article  CAS  Google Scholar 

  43. Willcocks LC, Smith KG, Clatworthy MR . Low-affinity Fc gamma receptors, autoimmunity and infection. Expert Rev Mol Med 2009; 11: e24.

    Article  Google Scholar 

  44. Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch JV . FcgammaRIV: a novel FcR with distinct IgG subclass specificity. Immunity 2005; 23: 41–51.

    Article  CAS  Google Scholar 

  45. Baudino L, Azeredo da Silveira S, Nakata M, Izui S . Molecular and cellular basis for pathogenicity of autoantibodies: lessons from murine monoclonal autoantibodies. Springer Semin Immunopathol 2006; 28: 175–184.

    Article  CAS  Google Scholar 

  46. Takahashi S, Fossati L, Iwamoto M, Merino R, Motta R, Kobayakawa T et al. Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J Clin Invest 1996; 97: 1597–1604.

    Article  CAS  Google Scholar 

  47. Peng SL, Szabo SJ, Glimcher LH . T-bet regulates IgG class switching and pathogenic autoantibody production. Proc Natl Acad Sci USA 2002; 99: 5545–5550.

    Article  CAS  Google Scholar 

  48. Genain CP, Abel K, Belmar N, Villinger F, Rosenberg DP, Linington C et al. Late complications of immune deviation therapy in a nonhuman primate. Science 1996; 274: 2054–2057.

    Article  CAS  Google Scholar 

  49. McFarland HF . Complexities in the treatment of autoimmune disease. Science 1996; 274: 2037–2038.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish research council, the Swedish Brain foundation, the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant agreement HEALTH-F4-2010-241504 (EURATRANS), Knut and Alice Wallenberg Foundation and the Swedish foundation for neurologically disabled (NHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Flytzani.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flytzani, S., Stridh, P., Guerreiro-Cacais, A. et al. Anti-MOG antibodies are under polygenic regulation with the most significant control coming from the C-type lectin-like gene locus. Genes Immun 14, 409–419 (2013). https://doi.org/10.1038/gene.2013.33

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2013.33

Keywords

This article is cited by

Search

Quick links