Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Temporal induction of immunoregulatory processes coincides with age-dependent resistance to viral-induced type 1 diabetes

Abstract

The dilute plasma cytokine milieu associated with type 1 diabetes (T1D), while difficult to measure directly, is sufficient to drive transcription in a bioassay that uses healthy leukocytes as reporters. Previously, we reported disease-associated, partially IL-1 dependent, transcriptional signatures in both T1D patients and the BioBreeding (BB) rat model. Here, we examine temporal signatures in congenic BBDR.lyp/lyp rats that develop spontaneous T1D, and BBDR rats where T1D progresses only after immunological perturbation in young animals. After weaning, the BBDR temporal signature showed early coincident induction of transcription related to innate inflammation as well as IL-10- and TGF-β-mediated regulation. BBDR plasma cytokine levels mirrored the signatures showing early inflammation, followed by induction of a regulated state that correlated with failure of virus to induce T1D in older rats. In contrast, the BBDR.lyp/lyp temporal signature exhibited asynchronous dynamics, with delayed induction of inflammatory transcription and later, weaker induction of regulatory transcription, consistent with their deficiency in regulatory T cells. Through longitudinal analyses of plasma-induced signatures in BB rats and a human T1D progressor, we have identified changes in immunoregulatory processes that attenuate a preexisting innate inflammatory state in BBDR rats, suggesting a mechanism underlying the decline in T1D susceptibility with age.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Mordes JP, Serreze DV, Greiner DL, Rossini AA . Animal models of autoimmune diabetes. In: LeRoith D, Taylor SI, Olefsky JM (eds). Diabetes Mellitus: A Fundamental and Clinical Text 3rd edn Lippincott, Williams, and Wilkins: Philadelphia, PA, USA, 2004, pp 591–610.

    Google Scholar 

  2. Crisa L, Mordes JP, Rossini AA . Autoimmune diabetes mellitus in the BB rat. Diabet Metab Rev 1992; 8: 4–37.

    Article  CAS  Google Scholar 

  3. MacMurray AJ, Moralejo DH, Kwitek AE, Rutledge EA, Van Yserloo B, Gohlke P et al. Lymphopenia in the BB rat model of type 1 diabetes is due to a mutation in a novel immune-associated nucleotide (Ian)-related gene. Genome Res 2002; 12: 1029–1039.

    Article  CAS  Google Scholar 

  4. Daheron L, Zenz T, Siracusa LD, Brenner C, Calabretta B . Molecular cloning of Ian4: a BCR/ABL-induced gene that encodes an outer membrane mitochondrial protein with GTP-binding activity. Nucleic Acids Res 2001; 29: 1308–1316.

    Article  CAS  Google Scholar 

  5. Pandarpurkar M, Wilson-Fritch L, Corvera S, Markholst H, Hornum L, Greiner DL et al. Ian4 is required for mitochondrial integrity and T cell survival. Proc Natl Acad Sci USA 2003; 100: 10382–10387.

    Article  CAS  Google Scholar 

  6. Hellquist A, Zucchelli M, Kivinen K, Saarialho-Kere U, Koskenmies S, Widen E et al. The human GIMAP5 gene has a common polyadenylation polymorphism increasing risk to systemic lupus erythematosus. J Med Genet 2007; 44: 314–321.

    Article  CAS  Google Scholar 

  7. Shin JH, Janer M, McNeney B, Blay S, Deutsch K, Sanjeevi CB et al. IA-2 autoantibodies in incident type I diabetes patients are associated with a polyadenylation signal polymorphism in GIMAP5. Genes Immun 2007; 8: 503–512.

    Article  CAS  Google Scholar 

  8. Lundsgaard D, Holm TL, Hornum L, Markholst H . In vivo control of diabetogenic T-Cells by regulatory CD4+CD25+ T-cells expressing Foxp3. Diabetes 2005; 54: 1040–1047.

    Article  CAS  Google Scholar 

  9. Poussier P, Ning T, Murphy T, Dabrowski D, Ramanathan S . Impaired post-thymic development of regulatory CD4+25+ T cells contributes to diabetes pathogenesis in BB rats. J Immunol 2005; 174: 4081–4089.

    Article  CAS  Google Scholar 

  10. Mathis D, Vence L, Benoist C . Beta-cell death during progression to diabetes. Nature 2001; 414: 792–798.

    Article  CAS  Google Scholar 

  11. Hessner MJ, Wang X, Meyer L, Geoffrey R, Jia S, Fuller J et al. Involvement of eotaxin, eosinophils, and pancreatic predisposition in development of type 1 diabetes mellitus in the BioBreeding rat. J Immunol 2004; 173: 6993–7002.

    Article  CAS  Google Scholar 

  12. Geoffrey R, Jia S, Kwitek AE, Woodliff J, Ghosh S, Lernmark A et al. Evidence of a functional role for mast cells in the development of type 1 diabetes mellitus in the biobreeding rat. J Immunol 2006; 177: 7275–7286.

    Article  CAS  Google Scholar 

  13. Bogdani M, Henschel AM, Kansra S, Fuller JM, Geoffrey R, Jia S et al. Biobreeding rat islets exhibit reduced antioxidative defense and N-acetyl cysteine treatment delays type 1 diabetes. J Endocrinol 2013; 216: 111–123.

    Article  CAS  Google Scholar 

  14. Bieg S, Simonson W, Ellefsen K, Lernmark A . Rel B is an early marker of autoimmune islet inflammation in the biobreeding (BB) rat. Pancreas 2000; 20: 47–54.

    Article  CAS  Google Scholar 

  15. Kukreja A, Maclaren NK . Autoimmunity and diabetes. J Clin Endocrinol Metab 1999; 84: 4371–4378.

    Article  CAS  Google Scholar 

  16. Beck JC, Goodner CJ, Wilson C, Wilson D, Glidden D, Baskin DG et al. Effects of ginkgolide B, a platelet-activating factor inhibitor on insulitis in the spontaneously diabetic BB rat. Autoimmunity 1991; 9: 225–235.

    Article  CAS  Google Scholar 

  17. Wang X, Jia S, Geoffrey R, Alemzadeh R, Ghosh S, Hessner MJ . Identification of a molecular signature in human type 1 diabetes mellitus using serum and functional genomics. J Immunol 2008; 180: 1929–1937.

    Article  CAS  Google Scholar 

  18. Kaldunski M, Jia S, Geoffrey R, Basken J, Prosser S, Kansra S et al. Identification of a serum-induced transcriptional signature associated with type 1 diabetes in the biobreeding rat. Diabetes 2010; 59: 2375–2385.

    Article  CAS  Google Scholar 

  19. Jia S, Kaldunski M, Jailwala P, Geoffrey R, Kramer J, Wang X et al. Use of transcriptional signatures induced in lymphoid and myeloid cell lines as an inflammatory biomarker in Type 1 diabetes. Physiol Genomics 2011; 43: 697–709.

    Article  CAS  Google Scholar 

  20. Levy H, Wang X, Kaldunski M, Jia S, Kramer J, Pavletich SJ et al. Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes. Genes Immun 2012; 13: 593–604.

    Article  CAS  Google Scholar 

  21. Ernst J, Bar-Joseph Z . STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformat 2006; 7: 191.

    Article  Google Scholar 

  22. Eckert RE, Neuder LE, Park J, Adler KB, Jones SL . Myristoylated alanine-rich C-kinase substrate (MARCKS) protein regulation of human neutrophil migration. Am J Respir Cell Mol Biol 2010; 42: 586–594.

    Article  CAS  Google Scholar 

  23. Eissenberg JC, Wong M, Chrivia JC . Human SRCAP and Drosophila melanogaster DOM are homologs that function in the notch signaling pathway. Mol Cell Biol 2005; 25: 6559–6569.

    Article  CAS  Google Scholar 

  24. Amsen D, Antov A, Flavell RA . The different faces of Notch in T-helper-cell differentiation. Nat Rev Immunol 2009; 9: 116–124.

    Article  CAS  Google Scholar 

  25. Liu J, Zhang H, Liu Y, Wang K, Feng Y, Liu M et al. KLF4 regulates the expression of interleukin-10 in RAW264.7 macrophages. Biochem Biophys Res Commun 2007; 362: 575–581.

    Article  CAS  Google Scholar 

  26. Hawiger D, Wan YY, Eynon EE, Flavell RA . The transcription cofactor Hopx is required for regulatory T cell function in dendritic cell-mediated peripheral T cell unresponsiveness. Nat Immunol 2010; 11: 962–968.

    Article  CAS  Google Scholar 

  27. Smith KG, Clatworthy MR . FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 2010; 10: 328–343.

    Article  CAS  Google Scholar 

  28. Geyeregger R, Zeyda M, Bauer W, Kriehuber E, Saemann MD, Zlabinger GJ et al. Liver X receptors regulate dendritic cell phenotype and function through blocked induction of the actin-bundling protein fascin. Blood 2007; 109: 4288–4295.

    Article  CAS  Google Scholar 

  29. Glass CK, Saijo K . Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol 2010; 10: 365–376.

    Article  CAS  Google Scholar 

  30. Wynn TA . IL-13 effector functions. Annu Rev Immunol 2003; 21: 425–456.

    Article  CAS  Google Scholar 

  31. Kim H, Seed B . The transcription factor MafB antagonizes antiviral responses by blocking recruitment of coactivators to the transcription factor IRF3. Nat Immunol 2010; 11: 743–750.

    Article  CAS  Google Scholar 

  32. Nacu N, Luzina IG, Highsmith K, Lockatell V, Pochetuhen K, Cooper ZA et al. Macrophages produce TGF-beta-induced (beta-ig-h3) following ingestion of apoptotic cells and regulate MMP14 levels and collagen turnover in fibroblasts. J Immunol 2008; 180: 5036–5044.

    Article  CAS  Google Scholar 

  33. Fu S, Zhang N, Yopp AC, Chen D, Mao M, Zhang H et al. TGF-beta induces Foxp3+T-regulatory cells from CD4+CD25—precursors. Am J Transplant 2004; 4: 1614–1627.

    Article  CAS  Google Scholar 

  34. English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP . Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(high) forkhead box P3+ regulatory T cells. Clin Exp Immunol 2009; 156: 149–160.

    Article  CAS  Google Scholar 

  35. Rushworth SA, MacEwan DJ, O’Connell MA . Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J Immunol 2008; 181: 6730–6737.

    Article  CAS  Google Scholar 

  36. Gaultier A, Arandjelovic S, Niessen S, Overton CD, Linton MF, Fazio S et al. Regulation of tumor necrosis factor receptor-1 and the IKK-NF-kappaB pathway by LDL receptor-related protein explains the antiinflammatory activity of this receptor. Blood 2008; 111: 5316–5325.

    Article  CAS  Google Scholar 

  37. Ellerman KE, Richards CA, Guberski DL, Shek WR, Like AA . Kilham rat triggers T-cell-dependent autoimmune diabetes in multiple strains of rat. Diabetes 1996; 45: 557–562.

    Article  CAS  Google Scholar 

  38. Tirabassi RS, Guberski DL, Blankenhorn EP, Leif JH, Woda BA, Liu Z et al. Infection with viruses from several families triggers autoimmune diabetes in LEW*1WR1 rats: prevention of diabetes by maternal immunization. Diabetes 2010; 59: 110–118.

    Article  CAS  Google Scholar 

  39. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 2010; 184: 3433–3441.

    Article  CAS  Google Scholar 

  40. Chen J, Bardes EE, Aronow BJ, Jegga AG . ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 2009; 37 Web Server issue W305–W311.

    Article  CAS  Google Scholar 

  41. Toscano MA, Commodaro AG, Ilarregui JM, Bianco GA, Liberman A, Serra HM et al. Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. J Immunol 2006; 176: 6323–6332.

    Article  CAS  Google Scholar 

  42. Fu W, Wei J, Gu J . MEF2C mediates the activation induced cell death (AICD) of macrophages. Cell Res 2006; 16: 559–565.

    Article  CAS  Google Scholar 

  43. Mousseau DD, Banville D, L’Abbe D, Bouchard P, Shen SH . PILRalpha, a novel immunoreceptor tyrosine-based inhibitory motif-bearing protein, recruits SHP-1 upon tyrosine phosphorylation and is paired with the truncated counterpart PILRbeta. J Biol Chem 2000; 275: 4467–4474.

    Article  CAS  Google Scholar 

  44. Martincic K, Alkan SA, Cheatle A, Borghesi L, Milcarek C . Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing. Nat Immunol 2009; 10: 1102–1109.

    Article  CAS  Google Scholar 

  45. Miao F, Li S, Chavez V, Lanting L, Natarajan R . Coactivator-associated arginine methyltransferase-1 enhances nuclear factor-kappaB-mediated gene transcription through methylation of histone H3 at arginine 17. Mol Endocrinol 2006; 20: 1562–1573.

    Article  CAS  Google Scholar 

  46. Akimova T, Beier UH, Wang L, Levine MH, Hancock WW . Helios expression is a marker of T cell activation and proliferation. PLoS ONE 2011; 6: e24226.

    Article  CAS  Google Scholar 

  47. Gottschalk RA, Corse E, Allison JP . Expression of Helios in peripherally induced Foxp3+ regulatory T cells. J Immunol 2012; 188: 976–980.

    Article  CAS  Google Scholar 

  48. Verhagen J, Wraith DC . Comment on ‘Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells’. J Immunol 2010; 185: 7129 author reply 7130.

    Article  CAS  Google Scholar 

  49. Zabransky DJ, Nirschl CJ, Durham NM, Park BV, Ceccato CM, Bruno TC et al. Phenotypic and functional properties of Helios+ regulatory T cells. PLoS ONE 2012; 7: e34547.

    Article  CAS  Google Scholar 

  50. Vaarala O, Atkinson MA, Neu J . The ‘perfect storm’ for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 2008; 57: 2555–2562.

    Article  CAS  Google Scholar 

  51. Valladares R, Sankar D, Li N, Williams E, Lai KK, Abdelgeliel AS et al. Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats. PLoS ONE 2010; 5: e10507.

    Article  Google Scholar 

  52. Hara N, Alkanani AK, Ir D, Robertson CE, Wagner BD, Frank DN et al. Prevention of virus-induced type 1 diabetes with antibiotic therapy. J Immunol 2012; 189: 3805–3814.

    Article  CAS  Google Scholar 

  53. Ize-Ludlow D, Lightfoot YL, Parker M, Xue S, Wasserfall C, Haller MJ et al. Progressive erosion of beta-cell function precedes the onset of hyperglycemia in the NOD mouse model of type 1 diabetes. Diabetes 2011; 60: 2086–2091.

    Article  CAS  Google Scholar 

  54. Delmastro MM, Piganelli JD . Oxidative stress and redox modulation potential in type 1 diabetes. Clin Dev Immunol 2011; 2011: 593863.

    Article  Google Scholar 

  55. von Herrath MG, Fujinami RS, Whitton JL . Microorganisms and autoimmunity: making the barren field fertile? Nat Rev Microbiol 2003; 1: 151–157.

    Article  CAS  Google Scholar 

  56. Zipris D, Hillebrands JL, Welsh RM, Rozing J, Xie JX, Mordes JP et al. Infections that induce autoimmune diabetes in BBDR rats modulate CD4+CD25+ T cell populations. J Immunol 2003; 170: 3592–3602.

    Article  CAS  Google Scholar 

  57. McKisic MD, Paturzo FX, Gaertner DJ, Jacoby RO, Smith AL . A nonlethal rat parvovirus infection suppresses rat T lymphocyte effector functions. J Immunol 1995; 155: 3979–3986.

    CAS  PubMed  Google Scholar 

  58. Brown DW, Welsh RM, Like AA . Infection of peripancreatic lymph nodes but not islets precedes Kilham rat virus-induced diabetes in BB/Wor rats. J Virol 1993; 67: 5873–5878.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hussain MJ, Maher J, Warnock T, Vats A, Peakman M, Vergani D . Cytokine overproduction in healthy first degree relatives of patients with IDDM. Diabetologia 1998; 41: 343–349.

    Article  CAS  Google Scholar 

  60. Petrich de Marquesini LG, Fu J, Connor KJ, Bishop AJ, McLintock NE, Pope C et al. IFN-gamma and IL-10 islet-antigen-specific T cell responses in autoantibody-negative first-degree relatives of patients with type 1 diabetes. Diabetologia 2010; 53: 1451–1460.

    Article  Google Scholar 

  61. Tree TI, Lawson J, Edwards H, Skowera A, Arif S, Roep BO et al. Naturally arising human CD4 T-cells that recognize islet autoantigens and secrete interleukin-10 regulate proinflammatory T-cell responses via linked suppression. Diabetes 2010; 59: 1451–1460.

    Article  CAS  Google Scholar 

  62. Mordes JP, Bortell R, Doukas J, Rigby M, Whalen B, Zipris D et al. The BB/Wor rat and the balance hypothesis of autoimmunity. Diabetes Metab Rev 1996; 12: 103–109.

    Article  CAS  Google Scholar 

  63. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80.

    Article  Google Scholar 

  64. Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J . RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 2006; 22: 2825–2827.

    Article  CAS  Google Scholar 

  65. Sturn A, Quackenbush J, Trajanoski Z . Genesis: cluster analysis of microarray data. Bioinformatics 2002; 18: 207–208.

    Article  CAS  Google Scholar 

  66. Edgar R, Domrachev M, Lash AE . Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30: 207–210.

    Article  CAS  Google Scholar 

  67. Pfaffl MW . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the patient who participated in this study as well as the physicians, nurses and staff of Children’s Hospital of Wisconsin and The Max McGee National Research Center for Juvenile Diabetes who assisted in subject recruitment and sample collection/processing. This work was supported by the Juvenile Diabetes Research Foundation International (grants 1-2008-1026, 5-2012-220, 17-2012-621 to MJH); The American Diabetes Association (grants 7-08-RA-106 to JPM, 7-09-BS-18 to EPB, and 7-12-BS-075 to MJH); The National Institutes of Health (grants R00DK077443 to Y-GC, R43DK85910 to JPM, R21AI088480 to EPB, R01DK080100 to XW, R01AI078713 and DP3DK098161 to MJH and 1-UL1-RR031973 The Clinical and Translational Science Institute Southeast Wisconsin); and The Children s Hospital of Wisconsin Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Hessner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YG., Mordes, J., Blankenhorn, E. et al. Temporal induction of immunoregulatory processes coincides with age-dependent resistance to viral-induced type 1 diabetes. Genes Immun 14, 387–400 (2013). https://doi.org/10.1038/gene.2013.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2013.31

Keywords

This article is cited by

Search

Quick links