Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

The macrophage soluble receptor AIM/Api6/CD5L displays a broad pathogen recognition spectrum and is involved in early response to microbial aggression

Abstract

Apoptosis inhibitor of macrophages (AIMs), a homologue of human Spα, is a mouse soluble member of the scavenger receptor cysteine-rich superfamily (SRCR-SF). This family integrates a group of proteins expressed by innate and adaptive immune cells for which no unifying function has yet been described. Pleiotropic functions have been ascribed to AIM, from viability support in lymphocytes during thymic selection to lipid metabolism and anti-inflammatory effects in autoimmune pathologies. In the present report, the pathogen binding properties of AIM have been explored. By using a recombinant form of AIM (rAIM) expressed in mammalian cells, it is shown that this protein is able to bind and aggregate Gram-positive and Gram-negative bacteria, as well as pathogenic and saprophytic fungal species. Importantly, endogenous AIM from mouse serum also binds to microorganisms and secretion of AIM was rapidly induced in mouse spleen macrophages following exposure to conserved microbial cell wall components. Cytokine release induced by well-known bacterial and fungal Toll-like receptor (TLR) ligands on mouse splenocytes was also inhibited in the presence of rAIM. Furthermore, mouse models of pathogen-associated molecular patterns (PAMPs)-induced septic shock of bacterial and fungal origin showed that serum AIM levels changed in a time-dependent manner. Altogether, these data suggest that AIM plays a general homeostatic role by supporting innate humoral defense during pathogen aggression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Gordon S . Pattern recognition receptors: doubling up for the innate immune response. Cell 2002; 111: 927–930.

    Article  CAS  Google Scholar 

  2. Janeway CA Jr, Medzhitov R . Innate immune recognition. Annu Rev Immunol 2002; 20: 197–216.

    Article  CAS  Google Scholar 

  3. Resnick D, Pearson A, Krieger M . The SRCR superfamily: a family reminiscent of the Ig superfamily. Trends Biochem Sci 1994; 19: 5–8.

    Article  CAS  Google Scholar 

  4. Sarrias MR, Gronlund J, Padilla O, Madsen J, Holmskov U, Lozano F . The Scavenger Receptor Cysteine-Rich (SRCR) domain: an ancient and highly conserved protein module of the innate immune system. Crit Rev Immunol 2004; 24: 1–37.

    Article  CAS  Google Scholar 

  5. Freeman M, Ashkenas J, Rees DJ, Kingsley DM, Copeland NG, Jenkins NA et al. An ancient, highly conserved family of cysteine-rich protein domains revealed by cloning type I and type II murine macrophage scavenger receptors. Proc Natl Acad Sci USA 1990; 87: 8810–8814.

    Article  CAS  Google Scholar 

  6. Aruffo A, Bowen MA, Patel DD, Haynes BF, Starling GC, Gebe JA et al. CD6–ligand interactions: a paradigm for SRCR domain function? Immunol Today 1997; 18: 498–504.

    Article  CAS  Google Scholar 

  7. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK et al. Identification of the haemoglobin scavenger receptor. Nature 2001; 409: 198–201.

    Article  CAS  Google Scholar 

  8. Brannstrom A, Sankala M, Tryggvason K, Pikkarainen T . Arginine residues in domain V have a central role for bacteria-binding activity of macrophage scavenger receptor MARCO. Biochem Biophys Res Commun 2002; 290: 1462–1469.

    Article  Google Scholar 

  9. Bikker FJ, Ligtenberg AJ, End C, Renner M, Blaich S, Lyer S et al. Bacteria binding by DMBT1/SAG/gp-340 is confined to the VEVLXXXXW motif in its scavenger receptor cysteine-rich domains. J Biol Chem 2004; 279: 47699–47703.

    Article  CAS  Google Scholar 

  10. Sarrias MR, Rosello S, Sanchez-Barbero F, Sierra JM, Vila J, Yelamos J et al. A role for human Sp alpha as a pattern recognition receptor. J Biol Chem 2005; 280: 35391–35398.

    Article  CAS  Google Scholar 

  11. Sarrias MR, Farnos M, Mota R, Sanchez-Barbero F, Ibanez A, Gimferrer I et al. CD6 binds to pathogen-associated molecular patterns and protects from LPS-induced septic shock. Proc Natl Acad Sci USA 2007; 104: 11724–11729.

    Article  CAS  Google Scholar 

  12. Vera J, Fenutria R, Canadas O, Figueras M, Mota R, Sarrias MR et al. The CD5 ectodomain interacts with conserved fungal cell wall components and protects from zymosan-induced septic shock-like syndrome. Proc Natl Acad Sci USA 2009; 106: 1506–1511.

    Article  CAS  Google Scholar 

  13. Miro-Julia C, Rosello S, Martinez VG, Fink DR, Escoda-Ferran C, Padilla O et al. Molecular and functional characterization of mouse S5D-SRCRB: a new group B member of the scavenger receptor cysteine-rich superfamily. J Immunol 2011; 186: 2344–2354.

    Article  CAS  Google Scholar 

  14. Jiang Y, Oliver P, Davies KE, Platt N . Identification and characterization of murine SCARA5, a novel class A scavenger receptor that is expressed by populations of epithelial cells. J Biol Chem 2006; 281: 11834–11845.

    Article  CAS  Google Scholar 

  15. Fabriek BO, van BR, Deng DM, Ligtenberg AJ, Nazmi K, Schornagel K et al. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood 2009; 113: 887–892.

    Article  CAS  Google Scholar 

  16. Kim WK, Hwang HR, Kim DH, Lee PY, In YJ, Ryu HY et al. Glycoproteomic analysis of plasma from patients with atopic dermatitis: CD5L and ApoE as potential biomarkers. Exp Mol Med 2008; 40: 677–685.

    Article  CAS  Google Scholar 

  17. Kuwata K, Watanabe H, Jiang SY, Yamamoto T, Tomiyama-Miyaji C, Abo T et al. AIM inhibits apoptosis of T cells and NKT cells in Corynebacterium-induced granuloma formation in mice. Am J Pathol 2003; 162: 837–847.

    Article  CAS  Google Scholar 

  18. Miyazaki T, Hirokami Y, Matsuhashi N, Takatsuka H, Naito M . Increased susceptibility of thymocytes to apoptosis in mice lacking AIM, a novel murine macrophage-derived soluble factor belonging to the scavenger receptor cysteine-rich domain superfamily. J Exp Med 1999; 189: 413–422.

    Article  CAS  Google Scholar 

  19. Gebe JA, Kiener PA, Ring HZ, Li X, Francke U, Aruffo A . Molecular cloning, mapping to human chromosome 1 q21–q23, and cell binding characteristics of Spalpha, a new member of the scavenger receptor cysteine-rich (SRCR) family of proteins. J Biol Chem 1997; 272: 6151–6158.

    Article  CAS  Google Scholar 

  20. Gebe JA, Llewellyn M, Hoggatt H, Aruffo A . Molecular cloning, genomic organization and cell-binding characteristics of mouse Spalpha. Immunology 2000; 99: 78–86.

    Article  CAS  Google Scholar 

  21. Sarrias MR, Padilla O, Monreal Y, Carrascal M, Abian J, Vives J et al. Biochemical characterization of recombinant and circulating human Spalpha. Tissue Antigens 2004; 63: 335–344.

    Article  CAS  Google Scholar 

  22. Gangadharan B, Antrobus R, Dwek RA, Zitzmann N . Novel serum biomarker candidates for liver fibrosis in hepatitis C patients. Clin Chem 2007; 53: 1792–1799.

    Article  CAS  Google Scholar 

  23. Gray J, Chattopadhyay D, Beale GS, Patman GL, Miele L, King BP et al. A proteomic strategy to identify novel serum biomarkers for liver cirrhosis and hepatocellular cancer in individuals with fatty liver disease. BMC Cancer 2009; 9: 271.

    Article  Google Scholar 

  24. Wu J, Kobayashi M, Sousa EA, Liu W, Cai J, Goldman SJ et al. Differential proteomic analysis of bronchoalveolar lavage fluid in asthmatics following segmental antigen challenge. Mol Cell Proteomics 2005; 4: 1251–1264.

    Article  CAS  Google Scholar 

  25. Yu HR, Kuo HC, Sheen JM, Wang L, Lin IC, Wang CL et al. A unique plasma proteomic profiling with imbalanced fibrinogen cascade in patients with Kawasaki disease. Pediatr Allergy Immunol 2009; 20: 699–707.

    Article  Google Scholar 

  26. Miyazaki T, Kurokawa J, Arai S . AIMing at metabolic syndrome. Towards the development of novel therapies for metabolic diseases via apoptosis inhibitor of macrophage (AIM). Circ J 2011; 75: 2522–2531.

    Article  CAS  Google Scholar 

  27. Arai S, Shelton JM, Chen M, Bradley MN, Castrillo A, Bookout AL et al. A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development. Cell Metab 2005; 1: 201–213.

    Article  CAS  Google Scholar 

  28. Kurokawa J, Arai S, Nakashima K, Nagano H, Nishijima A, Miyata K et al. Macrophage-derived AIM is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity. Cell Metab 2010; 11: 479–492.

    Article  CAS  Google Scholar 

  29. Ravnskov U, McCully KS . Infections may be causal in the pathogenesis of atherosclerosis. Am J Med Sci 2012; 344: 391–394.

    Article  Google Scholar 

  30. Haruta I, Kato Y, Hashimoto E, Minjares C, Kennedy S, Uto H et al. Association of AIM, a novel apoptosis inhibitory factor, with hepatitis via supporting macrophage survival and enhancing phagocytotic function of macrophages. J Biol Chem 2001; 276: 22910–22914.

    Article  CAS  Google Scholar 

  31. Kohfeldt E, Maurer P, Vannahme C, Timpl R . Properties of the extracellular calcium binding module of the proteoglycan testican. FEBS Lett 1997; 414: 557–561.

    Article  CAS  Google Scholar 

  32. Kurt-Jones EA, Mandell L, Whitney C, Padgett A, Gosselin K, Newburger PE et al. Role of toll-like receptor 2 (TLR2) in neutrophil activation: GM-CSF enhances TLR2 expression and TLR2-mediated interleukin 8 responses in neutrophils. Blood 2002; 100: 1860–1868.

    CAS  PubMed  Google Scholar 

  33. Ferstl R, Spiller S, Fichte S, Dreher S, Kirschning CJ . Experimental models of acute infection and Toll-like receptor driven septic shock. Methods Mol Biol 2009; 517: 313–327.

    Article  CAS  Google Scholar 

  34. Joseph SB, Bradley MN, Castrillo A, Bruhn KW, Mak PA, Pei L et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 2004; 119: 299–309.

    Article  CAS  Google Scholar 

  35. Sanjurjo L, Amezaga N, Vilaplana C, Caceres N, Marzo E, Valeri M et al. The scavenger protein apoptosis inhibitor of macrophages (AIM) potentiates the antimicrobial response against mycobacterium tuberculosis by enhancing autophagy. PLoS ONE 2013; 8: e79670.

    Article  CAS  Google Scholar 

  36. Keller SA, Paxian M, Ashburn JH, Clemens MG, Huynh T . Kupffer cell ablation improves hepatic microcirculation after trauma and sepsis. J Trauma 2005; 58: 740–749.

    Article  Google Scholar 

  37. Traeger T, Kessler W, Hilpert A, Mikulcak M, Entleutner M, Koerner P et al. Selective depletion of alveolar macrophages in polymicrobial sepsis increases lung injury, bacterial load and mortality but does not affect cytokine release. Respiration 2009; 77: 203–213.

    Article  CAS  Google Scholar 

  38. Verdrengh M, Tarkowski A . Role of macrophages in Staphylococcus aureus-induced arthritis and sepsis. Arthritis Rheum 2000; 43: 2276–2282.

    Article  CAS  Google Scholar 

  39. Vollmar B, Ruttinger D, Wanner GA, Leiderer R, Menger MD . Modulation of kupffer cell activity by gadolinium chloride in endotoxemic rats. Shock 1996; 6: 434–441.

    Article  CAS  Google Scholar 

  40. Elomaa O, Sankala M, Pikkarainen T, Bergmann U, Tuuttila A, Raatikainen-Ahokas A et al. Structure of the human macrophage MARCO receptor and characterization of its bacteria-binding region. J Biol Chem 1998; 273: 4530–4538.

    Article  CAS  Google Scholar 

  41. Bikker FJ, Ligtenberg AJ, Nazmi K, Veerman EC, van't HW, Bolscher JG et al. Identification of the bacteria-binding peptide domain on salivary agglutinin (gp-340/DMBT1), a member of the scavenger receptor cysteine-rich superfamily. J Biol Chem 2002; 277: 32109–32115.

    Article  CAS  Google Scholar 

  42. Kneidl J, Loffler B, Erat MC, Kalinka J, Peters G, Roth J et al. Soluble CD163 promotes recognition, phagocytosis and killing of Staphylococcus aureus via binding of specific fibronectin peptides. Cell Microbiol 2012; 14: 914–936.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Rosa Aligué (Cell Biology Unit of the University of Barcelona) and Dr. Jordi Vila (Department of Microbiology of the Hospital Clinic of Barcelona) for their kind help with microbial specimens. This study was supported by grants from the Spanish Ministerio de Economía y Competitividad (SAF2010-19717), Generalitat de Catalunya (2009SGR1101) and Instituto de Salud Carlos III (Spanish Network for Research in Infectious Diseases, REIPI, RD12/0015/0018). VGM is recipient of a fellowship from Ministerio de Economia y Competitividad (JCI-2010-06378). CE-F is recipient of a fellowship from Spanish Ministerio de Economía y Competitividad (BES-2008-005544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Lozano.

Ethics declarations

Competing interests

The authors declare no financial interests.

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology's website.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, V., Escoda-Ferran, C., Tadeu Simões, I. et al. The macrophage soluble receptor AIM/Api6/CD5L displays a broad pathogen recognition spectrum and is involved in early response to microbial aggression. Cell Mol Immunol 11, 343–354 (2014). https://doi.org/10.1038/cmi.2014.12

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.12

Keywords

This article is cited by

Search

Quick links