Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A review of the role of Puma, Noxa and Bim in the tumorigenesis, therapy and drug resistance of chronic lymphocytic leukemia

Abstract

Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults in the Western countries. The entire pathogenesis of CLL is not clear now, but defective regulation of apoptosis seems to be more important than uncontrolled cell proliferation in CLL. There are two main pathways of apoptosis: the extrinsic pathway and the intrinsic pathway. It is worth noting that the intrinsic pathway, rather than the extrinsic pathway, appears to be the key mediator of impaired apoptosis in CLL as a result of B-cell lymphoma 2 (Bcl-2) upregulation. One subclass of pro-apoptotic members within the Bcl-2 family are Bcl-2 homology 3 (BH3)-only proteins. They can regulate directly and/or indirectly the remaining Bcl-2 proteins to endanger mitochondria and induce apoptosis. We chose three molecules from the BH3-only family, Puma, Noxa and Bim, respectively, which had shown an exciting antitumor potential in previous reports, to explore their characters and functions in tumorigenesis, therapy and drug resistance of CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Chiorazzi N, Hatzi K, Albesiano E . B-cell chronic lymphocytic leukemia, a clonal disease of B lymphocytes with receptors that vary in specificity for (auto)antigens. Ann NY Acad Sci 2005; 352: 804–815.

    CAS  Google Scholar 

  2. Caligaris-Cappio F, Hamblin TJ . B-cell chronic lymphocytic leukemia: a bird of a different feather. J Clin Oncol 1999; 17: 399–408.

    CAS  PubMed  Google Scholar 

  3. Strasser A . The role of BH3-only proteins in the immune system. Nat Rev Immunol 2005; 5: 189–200.

    CAS  PubMed  Google Scholar 

  4. Huang DC, Strasser A . BH3-Only proteins-essential initiators of apoptotic cell death. Cell 2000; 103: 839–842.

    CAS  PubMed  Google Scholar 

  5. Elkholi R, Floros KV, Chipuk JE . The role of BH3-only proteins in tumor cell development, signaling, and treatment. Genes Cancer 2011; 2: 523–537.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 2005; 17: 525–535.

    CAS  PubMed  Google Scholar 

  7. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006; 9: 351–365.

    CAS  PubMed  Google Scholar 

  8. Kvansakul M, Yang H, Fairlie WD, Czabotar PE, Fischer SF, Perugini MA et al. Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ 2008; 15: 1564–1571.

    CAS  PubMed  Google Scholar 

  9. Kang MH, Reynolds CP . Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 2009; 15: 1126–1132.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ . Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002; 2: 183–192.

    Article  CAS  PubMed  Google Scholar 

  11. Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 2007; 315: 856–859.

    CAS  PubMed  Google Scholar 

  12. Inohara N, Ding L, Chen S, Núñez G . Harakiri a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L). EMBO J 1997; 16: 1686–1694.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakano K, Vousden KH . PUMA a novel proapoptotic gene, is induced by p53. Mol Cell 2001; 7: 683–694.

    CAS  PubMed  Google Scholar 

  14. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000; 288: 1053–1058.

    CAS  PubMed  Google Scholar 

  15. Puthalakath H, Villunger A, O'Reilly LA, Beaumont JG, Coultas L, Cheney RE et al. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 2001; 293: 1829–1832.

    CAS  PubMed  Google Scholar 

  16. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ . Bad a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995; 80: 285–291.

    CAS  PubMed  Google Scholar 

  17. Kaeser MD, Iggo RD . Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci USA 2002; 99: 95–100.

    CAS  PubMed  Google Scholar 

  18. You H, Pellegrini M, Tsuchihara K, Yamamoto K, Hacker G, Erlacher M et al. FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J Exp Med 2006; 203: 1657–1663.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu WS, Heinrichs S, Xu D, Garrison SP, Zambetti GP, Adams JM et al. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 2005; 123: 641–653.

    CAS  PubMed  Google Scholar 

  20. Futami T, Miyagishi M, Taira K . Identification of a network involved in thapsigargin-induced apoptosis using a library of small interfering RNA expression vectors. J Biol Chem 2005; 280: 826–831.

    CAS  PubMed  Google Scholar 

  21. Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 2003; 4: 321–328.

    CAS  PubMed  Google Scholar 

  22. Villunger A, Michalak EM, Coultas L, Müllauer F, Böck G, Ausserlechner MJ et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003; 302: 1036–1038.

    CAS  PubMed  Google Scholar 

  23. Jabbour AM, Heraud JE, Daunt CP, Kaufmann T, Sandow J, O’Reilly LA et al. Puma indirectly activates Bax to cause apoptosis in the absence of Bid or Bim. Cell Death Differ 2009; 16: 555–563.

    CAS  PubMed  Google Scholar 

  24. Yee KS, Wilkinson S, James J, Ryan KM, Vousden KH . PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ 2009; 16: 1135–1145.

    CAS  PubMed  Google Scholar 

  25. Flinterman M, Guelen L, Ezzati-Nik S, Killick R, Melino G, Tominaga K et al. E1A activates transcription of p73 and Noxa to induce apoptosis. J Biol Chem 2005; 280: 5945–5959.

    CAS  PubMed  Google Scholar 

  26. Hershko T, Ginsberg D . Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem 2004; 279: 8627–8634.

    CAS  PubMed  Google Scholar 

  27. Michalak EM, Jansen ES, Happo L, Cragg MS, Tai L, Smyth GK et al. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ 2009; 16: 684–696.

    CAS  PubMed  Google Scholar 

  28. Suzuki S, Nakasato M, Shibue T, Koshima I, Taniguchi T . Therapeutic potential of proapoptotic molecule Noxa in the selective elimination of tumor cells. Cancer Sci 2009; 100: 759–769.

    CAS  PubMed  Google Scholar 

  29. Smit LA, Hallaert DY, Spijker R, de Goeij B, Jaspers A, Kater AP et al. Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity. Blood 2007; 109: 1660–1668.

    CAS  PubMed  Google Scholar 

  30. Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ . Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 2000; 10: 1201–1204.

    CAS  PubMed  Google Scholar 

  31. Fischer SF, Bouillet P, O’Donnell K, Light A, Tarlinton DM, Strasser A . Proapoptotic BH3-only protein Bim is essential for developmentally programmed death of germinal center-derived memory B cells and antibody-forming cells. Blood 2007; 110: 3978–3984.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Erlacher M, Labi V, Manzl C, Böck G, Tzankov A, Häcker G et al. Puma cooperates with Bim, the rate-limiting BH3-only protein in cell death during lymphocyte development, in apoptosis induction. J Exp Med 2006; 203: 2939–2951.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Egle A, Harris AW, Bouillet P, Cory S . Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci USA 2004; 101: 6164–6169.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sinicrope FA, Rego RL, Okumura K, Foster NR, O’Connell MJ, Sargent DJ et al. Prognostic impact of bim, puma, and noxa expression in human colon carcinomas. Clin Cancer Res 2008; 14: 5810–5818.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, Siebert R, Climent J, Fresquet V et al. Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood 2007; 109: 271–280.

    CAS  PubMed  Google Scholar 

  36. Vaux DL, Adams JM, Alexander WS, Pike BL . Immunologic competence of B cells subjected to constitutive c-myc oncogene expression in immunoglobulin heavy chain enhancer myc transgenic mice. J Immunol 1987; 139: 3854–3860.

    CAS  PubMed  Google Scholar 

  37. Zhu HJ, Xu W, Cao X, Fang C, Zhu DX, Dong HJ et al. Detection of puma mRNA levels by real-time quantitative RT-PCR in chronic lymphocytic leukemia and its clinical significance. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010; 18: 843–848.

    CAS  PubMed  Google Scholar 

  38. Happo L, Cragg MS, Phipson B, Haga JM, Jansen ES, Herold MJ et al. Maximal killing of lymphoma cells by DNA damage-inducing therapy requires not only the p53 targets Puma and Noxa, but also Bim. Blood 2010; 116: 5256–5267.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. López-Royuela N, Pérez-Galán P, Galán-Malo P, Yuste VJ, Anel A, Susín SA et al. Different contribution of BH3-only proteins and caspases to doxorubicin-induced apoptosis in p53-deficient leukemia cells. Biochem Pharmacol 2010; 79: 1746–1758.

    PubMed  Google Scholar 

  40. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK . Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001; 1: 194–202.

    CAS  PubMed  Google Scholar 

  41. Minucci S, Pelicci PG . Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 2006; 6: 38–51.

    CAS  PubMed  Google Scholar 

  42. Rosato RR, Grant S . Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin Ther Targets 2005; 9: 809–824.

    CAS  PubMed  Google Scholar 

  43. Inoue S, Riley J, Gant TW, Dyer MJ, Cohen GM . Apoptosis induced by histone deacetylase inhibitors in leukemic cells is mediated by Bim and Noxa. Leukemia 2007; 21: 1773–1782.

    CAS  PubMed  Google Scholar 

  44. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 1998; 91: 3379–3389.

    CAS  PubMed  Google Scholar 

  45. Iglesias-Serret D, de Frias M, Santidrián AF, Coll-Mulet L, Cosialls AM, Barragán M et al. Regulation of the proapoptotic BH3-only protein BIM by glucocorticoids, survival signals and proteasome in chronic lymphocytic leukemia cells. Leukemia 2007; 21: 281–287.

    CAS  PubMed  Google Scholar 

  46. Wang Z, Malone MH, He H, McColl KS, Distelhorst CW . Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. J Biol Chem 2003; 278: 23861–23867.

    CAS  PubMed  Google Scholar 

  47. Erlacher M, Michalak EM, Kelly PN, Labi V, Niederegger H, Coultas L et al. BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 2005; 106: 4131–4138.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Abrams MT, Robertson NM, Yoon K, Wickstrom E . Inhibition of glucocorticoid-induced apoptosis by targeting the major splice variants of BIM mRNA with small interfering RNA and short hairpin RNA. J Biol Chem 2004; 279: 55809–55817.

    CAS  PubMed  Google Scholar 

  49. Bachmann PS, Gorman R, Mackenzie KL, Lutze-Mann L, Lock RB . Dexamethasone resistance in B-cell precursor childhood acute lymphoblastic leukemia occurs downstream of ligand-induced nuclear translocation of the glucocorticoid receptor. Blood 2005; 105: 2519–2526.

    CAS  PubMed  Google Scholar 

  50. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Köntgen F et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999; 286: 1735–1738.

    CAS  PubMed  Google Scholar 

  51. Del Gaizo Moore V, Brown JR, Certo M, Love TM, Novina CD, Letai A . Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest 2007; 117: 112–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tahir SK, Yang X, Anderson MG, Morgan-Lappe SE, Sarthy AV, Chen J et al. Influence of Bcl-2 family members on the cellular response of small-cell lung cancer cell lines to ABT-737. Cancer Res 2007; 67: 1176–1183.

    CAS  PubMed  Google Scholar 

  53. van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006; 10: 389–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kojima K, Konopleva M, Samudio IJ, Schober WD, Bornmann WG, Andreeff M . Concomitant inhibition of MDM2 and Bcl-2 protein function synergistically induce mitochondrial apoptosis in AML. Cell Cycle 2006; 5: 2778–2786.

    CAS  PubMed  Google Scholar 

  55. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 2006; 10: 375–388.

    CAS  PubMed  Google Scholar 

  56. Chauhan D, Velankar M, Brahmandam M, Hideshima T, Podar K, Richardson P et al. A novel Bcl-2/Bcl-X(L)/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene 2006; 26: 2374–2380.

    PubMed  Google Scholar 

  57. Mohammad RM, Wang S, Banerjee S, Wu X, Chen J, Sarkar FH . Nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-XL, (-)-Gossypol, enhances biological effect of genistein against BxPC-3 human pancreatic cancer cell line. Pancreas 2005; 31: 317–324.

    CAS  PubMed  Google Scholar 

  58. Van Poznak C, Seidman AD, Reidenberg MM, Moasser MM, Sklarin N, Van Zee K et al. Oral gossypol in the treatment of patients with refractory metastatic breast cancer: a phase I/II clinical trial. Breast Cancer Res Treat 2001; 66: 239–248.

    CAS  PubMed  Google Scholar 

  59. Verhaegen M, Bauer JA, Martín de la Vega C, Wang G, Wolter KG, Brenner JC et al. A novel BH3 mimetic reveals a mitogen-activated protein kinase-dependent mechanism of melanoma cell death controlled by p53 and reactive oxygen species. Cancer Res 2006; 66: 11348–11359.

    CAS  PubMed  Google Scholar 

  60. Li J, Viallet J, Haura EB . A small molecule pan-Bcl-2 family inhibitor, GX15-070, induces apoptosis and enhances cisplatin-induced apoptosis in non-small cell lung cancer cells. Cancer Chemother Pharmacol 2008; 61: 525–534.

    CAS  PubMed  Google Scholar 

  61. O'Brien SM, Claxton DF, Crump M, Faderl S, Kipps T, Keating MJ et al. Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood 2009; 113: 299–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hwang JJ, Kuruvilla J, Mendelson D, Pishvaian MJ, Deeken JF, Siu LL et al. Phase I dose finding studies of obatoclax (GX15-070), a small molecule pan-BCL-2 family antagonist, in patients with advanced solid tumors or lymphoma. Clin Cancer Res 2010; 16: 4038–4045.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Parikh SA, Kantarjian H, Schimmer A, Walsh W, Asatiani E, El-Shami K et al. Phase II study of obatoclax mesylate (GX15-070), a small-molecule BCL-2 family antagonist, for patients with myelofibrosis. Clin Lymphoma Myeloma Leuk 2010; 10: 285–289.

    CAS  PubMed  Google Scholar 

  64. Trudel S, Li ZH, Rauw J, Tiedemann RE, Wen XY, Stewart AK . Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma. Blood 2007; 109: 5430–5438.

    CAS  PubMed  Google Scholar 

  65. Ghiotto F, Fais F, Tenca C, Tomati V, Morabito F, Casciaro S et al. Apoptosis of B-cell chronic lymphocytic leukemia cells induced by a novel BH3 peptidomimetic. Cancer Biol Ther 2009; 8: 263–271.

    CAS  PubMed  Google Scholar 

  66. Ponassi R, Biasotti B, Tomati V, Bruno S, Poggi A, Malacarne D et al. A novel Bim-BH3-derived Bcl-XL inhibitor: biochemical characterization, in vitro, in vivo and ex-vivo anti-leukemic activity. Cell Cycle 2008; 7: 3211–3224.

    CAS  PubMed  Google Scholar 

  67. Mohammad RM, Goustin AS, Aboukameel A, Chen B, Banerjee S, Wang G et al. Preclinical studies of TW-37, a new nonpeptidic small-molecule inhibitor of Bcl-2, in diffuse large cell lymphoma xenograft model reveal drug action on both Bcl-2 and Mcl-1. Clin Cancer Res 2007; 13: 2226–2235.

    CAS  PubMed  Google Scholar 

  68. Ashimori N, Zeitlin BD, Zhang Z, Warner K, Turkienicz IM, Spalding AC et al. TW-37, a small-molecule inhibitor of Bcl-2, mediates S-phase cell cycle arrest and suppresses head and neck tumor angiogenesis. Mol Cancer Ther 2009; 8: 893–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang Z, Azmi AS, Ahmad A, Banerjee S, Wang S, Sarkar FH et al. TW-37, a small-molecule inhibitor of Bcl-2, inhibits cell growth and induces apoptosis in pancreatic cancer: involvement of Notch-1 signaling pathway. Cancer Res 2009; 69: 2757–2765.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435: 677–681.

    CAS  PubMed  Google Scholar 

  71. Paoluzzi L, Gonen M, Bhagat G, Furman RR, Gardner JR, Scotto L et al. The BH3-only mimetic ABT-737 synergizes the antineoplastic activity of proteasome inhibitors in lymphoid malignancies. Blood 2008; 112: 2906–2916.

    CAS  PubMed  Google Scholar 

  72. Dodou K, Anderson RJ, Small DA, Groundwater PW . Investigations on gossypol: past and present developments. Expert Opin Investig Drugs 2005; 14: 1419–1434.

    CAS  PubMed  Google Scholar 

  73. Oliver CL, Miranda MB, Shangary S, Land S, Wang S, Johnson DE et al. (-)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-X(L)-mediated apoptosis resistance. Mol Cancer Ther 2005; 4: 23–31.

    CAS  PubMed  Google Scholar 

  74. Lei X, Chen Y, Du G, Yu W, Wang X, Qu H et al. Gossypol induces Bax/Bak-independent activation of apoptosis and cytochrome c release via a conformational change in Bcl-2. FASEB J 2006; 20: 2147–2149.

    CAS  PubMed  Google Scholar 

  75. Balakrishnan K, Wierda WG, Keating MJ, Gandhi V . Gossypol a BH3 mimetic, induces apoptosis in chronic lymphocytic leukemia cells. Blood 2008; 112: 1971–1980.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lowe SW, Ruley HE, Jacks T, Housman DE . p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74: 957–967.

    CAS  PubMed  Google Scholar 

  77. Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 1999; 104: 263–269.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tonino SH, van Laar J, van Oers MH, Wang JY, Eldering E, Kater AP . ROS-mediated upregulation of Noxa overcomes chemoresistance in chronic lymphocytic leukemia. Oncogene 2011; 30: 701–713.

    CAS  PubMed  Google Scholar 

  79. el Rouby S, Thomas A, Costin D, Rosenberg CR, Potmesil M, Silber R et al. p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood 1993; 82: 3452–3459.

    CAS  PubMed  Google Scholar 

  80. Pettitt AR, Sherrington PD, Stewart G, Cawley JC, Taylor AM, Stankovic T . p53 dysfunction in B-cell chronic lymphocytic leukemia: inactivation of ATM as an alternative to TP53 mutation. Blood 2001; 98: 814–822.

    CAS  PubMed  Google Scholar 

  81. Karst AM, Dai DL, Martinka M, Li G . PUMA expression is significantly reduced in human cutaneous melanomas. Oncogene 2005; 24: 1111–1116.

    CAS  PubMed  Google Scholar 

  82. Chen Y, Qian H, Wang H, Zhang X, Fu M, Liang X et al. Ad-PUMA sensitizes drug-resistant choriocarcinoma cells to chemotherapeutic agents. Gynecol Oncol 2007; 107: 505–512.

    CAS  PubMed  Google Scholar 

  83. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L . PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA 2003; 100: 1931–1936.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Billard C . Development of Noxa-like BH3 Mimetics for Apoptosis-Based Therapeutic Strategy in Chronic Lymphocytic Leukemia. Mol Cancer Res 2012; 10: 673–676.

    CAS  PubMed  Google Scholar 

  85. Tromp JM, Geest CR, Breij EC, Elias JA, van Laar J, Luijks DM et al. Tipping the Noxa/Mcl-1 balance overcomes ABT-737 resistance in chronic lymphocytic leukemia. Clin Cancer Res 2012; 18: 487–498.

    CAS  PubMed  Google Scholar 

  86. Alonso R, López-Guerra M, Upshaw R, Bantia S, Smal C, Bontemps F et al. Forodesine has high antitumor activity in chronic lymphocytic leukemia and activates p53-independent mitochondrial apoptosis by induction of p73 and BIM. Blood 2009; 114: 1563–1575.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (30871104, 30971296, 81170488), Natural Science Foundation of Jiangsu Province (BK2010584), Key Projects of Health Department of Jiangsu Province (K201108), Jiangsu Province’s Medical Elite Program (RC2011169), University Doctoral Foundation of the Ministry of Education of China (20093234110010), the Program for Development of Innovative Research Team in the First Affiliated Hospital of NJMU, and the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, LN., Li, JY. & Xu, W. A review of the role of Puma, Noxa and Bim in the tumorigenesis, therapy and drug resistance of chronic lymphocytic leukemia. Cancer Gene Ther 20, 1–7 (2013). https://doi.org/10.1038/cgt.2012.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.84

Keywords

This article is cited by

Search

Quick links