Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Autografting

Peripheral blood regulatory T cells in patients with diffuse systemic sclerosis (SSc) before and after autologous hematopoietic SCT: a pilot study

Abstract

The present pilot study aims to evaluate the frequency and the function of regulatory T (Treg) cells in patients with diffuse cutaneous SSc (dcSSc) before and after autologous hematopoietic SCT (aHSCT). Peripheral blood lymphocytes from seven dcSSc patients were analyzed before and 24 months after aHSCT and were compared with those from seven healthy donors (controls). Immunophenotyping of CD4+CD25highFoxP3+ natural Treg (nTreg), CD4+CD25+TGF-β+ and CD4+CD25+IL-10+ adaptive Treg (aTreg) cell subsets was performed using four-color flow cytometry. Treg-suppressive capability was measured after coculture with autologous T effector cells by evaluation of T-cell proliferation using 3H-thymidine incorporation. Peripheral CD4+CD25highFoxP3+ (2±0.5 vs 4.2±1.1, P<0.01), CD4+CD25+TGF-β+ (6.9±1.8 vs 14.6±5.0, P<0.05) and CD4+CD25+IL-10+ (10.7±0.5 vs 16.1±3.2, P<0.01) Tregs as well as CD4+CD25highCD127low Tregs suppressive capacity (P<0.05) were decreased in dcSSc patients vs controls. After aHSCT (n=7), the percentages of CD4+CD25highFoxP3+ (4.1±1.8) and CD4+CD25+IL-10+ (15.7±2.2) Treg cells and the suppressive activity of CD4+CD25highCD127low were restored to the levels in controls. The decreased frequency and the functional defect of peripheral Treg cells from patients with dcSSc are reversed following aHSCT to reach those observed in controls. This pilot study brings evidence of an effective restoration of nTreg and aTreg subsets, and recovery of nTreg suppressive function following aHSCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Gabrielli A, Avvedimento EV, Krieg T . Scleroderma. N Engl J Med 2009; 360: 1989–2003.

    Article  CAS  PubMed  Google Scholar 

  2. Baraut J, Michel L, Verrecchia F, Farge D . Relationship between cytokine profiles and clinical outcomes in patients with systemic sclerosis. Autoimmun Rev 2010; 10: 65–73.

    Article  CAS  PubMed  Google Scholar 

  3. Chizzolini C . T cells, B cells, and polarized immune response in the pathogenesis of fibrosis and systemic sclerosis. Curr Opin Rheumatol 2008; 20: 707–712.

    Article  CAS  PubMed  Google Scholar 

  4. Yurovsky VV, Wigley FM, Wise RA, White B . Skewing of the CD8+ T-cell repertoire in the lungs of patients with systemic sclerosis. Hum Immunol 1996; 48: 84–97.

    Article  CAS  PubMed  Google Scholar 

  5. Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G . Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 2001; 193: 1303–1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fontenot JD, Gavin MA, Rudensky AY . Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 330–336.

    Article  CAS  PubMed  Google Scholar 

  7. Bluestone JA, Abbas AK . Natural versus adaptive regulatory T cells. Nat Rev Immunol 2003; 3: 253–257.

    Article  CAS  PubMed  Google Scholar 

  8. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001; 182: 18–32.

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192: 303–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wood KJ, Sakaguchi S . Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3: 199–210.

    Article  CAS  PubMed  Google Scholar 

  11. Curotto de Lafaille MA, Lafaille JJ . CD4(+) regulatory T cells in autoimmunity and allergy. Curr Opin Immunol 2002; 14: 771–778.

    Article  CAS  PubMed  Google Scholar 

  12. Banica L, Besliu A, Pistol G, Stavaru C, Ionescu R, Forsea A-M et al. Quantification and molecular characterization of regulatory T cells in connective tissue diseases. Autoimmunity 2009; 42: 41–49.

    Article  CAS  PubMed  Google Scholar 

  13. Brusko TM, Putnam AL, Bluestone JA . Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev 2008; 223: 371–390.

    Article  CAS  PubMed  Google Scholar 

  14. Bonelli M, Savitskaya A, von Dalwigk K, Steiner CW, Aletaha D, Smolen JS et al. Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). Int Immunol 2008; 20: 861–868.

    Article  CAS  PubMed  Google Scholar 

  15. Cao D, Malmström V, Baecher-Allan C, Hafler D, Klareskog L, Trollmo C . Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol 2003; 33: 215–223.

    Article  CAS  PubMed  Google Scholar 

  16. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA . Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 2004; 199: 971–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kriegel MA, Lohmann T, Gabler C, Blank N, Kalden JR, Lorenz H-M . Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. J Exp Med 2004; 199: 1285–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Balandina A, Lécart S, Dartevelle P, Saoudi A, Berrih-Aknin S . Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood 2005; 105: 735–741.

    Article  CAS  PubMed  Google Scholar 

  19. Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TIM . Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 2005; 54: 92–99.

    Article  CAS  PubMed  Google Scholar 

  20. Antiga E, Quaglino P, Bellandi S, Volpi W, Del Bianco E, Comessatti A et al. Regulatory T cells in the skin lesions and blood of patients with systemic sclerosis and morphoea. Br J Dermatol 2010; 162: 1056–1063.

    Article  CAS  PubMed  Google Scholar 

  21. Papp G, Horvath IF, Barath S, Gyimesi E, Sipka S, Szodoray P et al. Altered T-cell and regulatory cell repertoire in patients with diffuse cutaneous systemic sclerosis. Scand J Rheumatol 2011; 40: 205–210.

    Article  CAS  PubMed  Google Scholar 

  22. Fenoglio D, Battaglia F, Parodi A, Stringara S, Negrini S, Panico N et al. Alteration of Th17 and Treg cell subpopulations co-exist in patients affected with systemic sclerosis. Clin Immunol 2011; 139: 249–257.

    Article  CAS  PubMed  Google Scholar 

  23. Radstake TRDJ, van Bon L, Broen J, Wenink M, Santegoets K, Deng Y et al. Increased frequency and compromised function of T regulatory cells in systemic sclerosis (SSc) is related to a diminished CD69 and TGFbeta expression. PLoS One 2009; 4: e5981.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Giovannetti A, Rosato E, Renzi C, Maselli A, Gambardella L, Giammarioli AM et al. Analyses of T cell phenotype and function reveal an altered T cell homeostasis in systemic sclerosis. Correlations with disease severity and phenotypes. Clin Immunol 2010; 137: 122–133.

    Article  CAS  PubMed  Google Scholar 

  25. Slobodin G, Ahmad MS, Rosner I, Peri R, Rozenbaum M, Kessel A et al. Regulatory T cells (CD4(+)CD25(bright)FoxP3(+)) expansion in systemic sclerosis correlates with disease activity and severity. Cell Immunol 2010; 261: 77–80.

    Article  CAS  PubMed  Google Scholar 

  26. Klein S, Kretz CC, Ruland V, Stumpf C, Haust M, Hartschuh W et al. Reduction of regulatory T cells in skin lesions but not in peripheral blood of patients with systemic scleroderma. Ann Rheum Dis 2011; 70: 1475–1481.

    Article  CAS  PubMed  Google Scholar 

  27. Burt RK, Shah SJ, Dill K, Grant T, Gheorghiade M, Schroeder J et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 2011; 378: 498–506.

    Article  CAS  PubMed  Google Scholar 

  28. Vonk MC, Marjanovic Z, van den Hoogen FHJ, Zohar S, Schattenberg AVMB, Fibbe WE et al. Long-term follow-up results after autologous haematopoietic stem cell transplantation for severe systemic sclerosis. Ann Rheum Dis 2008; 67: 98–104.

    Article  CAS  PubMed  Google Scholar 

  29. Farge D, Henegar C, Carmagnat M, Daneshpouy M, Marjanovic Z, Rabian C et al. Analysis of immune reconstitution after autologous bone marrow transplantation in systemic sclerosis. Arthritis Rheum 2005; 52: 1555–1563.

    Article  CAS  PubMed  Google Scholar 

  30. Bohgaki T, Atsumi T, Bohgaki M, Furusaki A, Kondo M, Sato-Matsumura KC et al. Immunological reconstitution after autologous hematopoietic stem cell transplantation in patients with systemic sclerosis: relationship between clinical benefits and intensity of immunosuppression. J Rheumatol 2009; 36: 1240–1248.

    Article  CAS  PubMed  Google Scholar 

  31. LeRoy EC, Medsger Jr TA . Criteria for the classification of early systemic sclerosis. J Rheumatol 2001; 28: 1573–1576.

    CAS  PubMed  Google Scholar 

  32. Kuhn A, Beissert S, Krammer PH . CD4(+)CD25 (+) regulatory T cells in human lupus erythematosus. Arch Dermatol Res 2009; 301: 71–81.

    Article  PubMed  Google Scholar 

  33. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006; 203: 1701–1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang L, Bertucci AM, Ramsey-Goldman R, Burt RK, Datta SK . Regulatory T cell (Treg) subsets return in patients with refractory lupus following stem cell transplantation, and TGF-beta-producing CD8+ Treg cells are associated with immunological remission of lupus. J Immunol 2009; 183: 6346–6358.

    Article  CAS  PubMed  Google Scholar 

  35. Muraro PA, Douek DC, Packer A, Chung K, Guenaga FJ, Cassiani-Ingoni R et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med 2005; 201: 805–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Kleer I, Vastert B, Klein M, Teklenburg G, Arkesteijn G, Yung GP et al. Autologous stem cell transplantation for autoimmunity induces immunologic self-tolerance by reprogramming autoreactive T cells and restoring the CD4+CD25+ immune regulatory network. Blood 2006; 107: 1696–1702.

    Article  CAS  PubMed  Google Scholar 

  37. Alexander T, Thiel A, Rosen O, Massenkeil G, Sattler A, Kohler S et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 2009; 113: 214–223.

    Article  CAS  PubMed  Google Scholar 

  38. Radbruch A, Thiel A . Cell therapy for autoimmune diseases: does it have a future? Ann Rheum Dis 2004; 63: ii96–ii101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Venigalla RKC, Tretter T, Krienke S, Max R, Eckstein V, Blank N et al. Reduced CD4+,CD25− T cell sensitivity to the suppressive function of CD4+,CD25high,CD127 -/low regulatory T cells in patients with active systemic lupus erythematosus. Arthritis Rheum 2008; 58: 2120–2130.

    Article  PubMed  Google Scholar 

  40. van Amelsfort JMR, van Roon JAG, Noordegraaf M, Jacobs KMG, Bijlsma JWJ, Lafeber FPJG et al. Proinflammatory mediator-induced reversal of CD4+,CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum 2007; 56: 732–742.

    Article  CAS  PubMed  Google Scholar 

  41. O’Sullivan BJ, Thomas HE, Pai S, Santamaria P, Iwakura Y, Steptoe RJ et al. IL-1 beta breaks tolerance through expansion of CD25+ effector T cells. J Immunol 2006; 176: 7278–7287.

    Article  PubMed  Google Scholar 

  42. Farge D, Gluckman E . Autologous HSCT in systemic sclerosis: a step forward. Lancet 2011; 378: 460–462.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Association des Sclérodermiques de France (ASF) and the Groupe Francophone de Recherche sur la Sclérodermie (GFRS). This work was supported by grants from the Groupe Français de Recherche sur la Sclérodermie (GFRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Michel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baraut, J., Grigore, E., Jean-Louis, F. et al. Peripheral blood regulatory T cells in patients with diffuse systemic sclerosis (SSc) before and after autologous hematopoietic SCT: a pilot study. Bone Marrow Transplant 49, 349–354 (2014). https://doi.org/10.1038/bmt.2013.202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2013.202

Keywords

This article is cited by

Search

Quick links