Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Experimental Oncology
  • Published:

Mechanisms for optimising photodynamic therapy: second-generation photosensitisers in combination with mitomycin C

Abstract

Mechanisms for improving photodynamic therapy (PDT) were investigated in the murine RIF1 tumour using meso-tetrahydroxyphenylchlorin (m-THPC) or bacteriochlorin a (BCA) as photosensitisers and comparing these results with Photofrin-mediated PDT. The 86Rb extraction technique was used to measure changes in perfusion at various times after interstitial PDT. Non-curative combinations of light doses with m-THPC and BCA PDT markedly decreased vascular perfusion. This decrease was more pronounced for both new photosensitisers than for Photofrin. Comparison of tumour perfusion after PDT with tumour response revealed an inverse correlation for all three photosensitisers, but the relationship was less clear for m-THPC and BCA. In vivo/in vitro experiments were performed after Photofrin or m-THPC PDT in order to assess direct tumour kill (immediate plating) vs indirect vascular effects (delayed plating). For both photosensitisers, there was little direct cell killing but clonogenic survival decreased as the interval between treatment and excision increased. When m-THPC PDT was combined with mitomycin C (MMC), light doses could be decreased by a factor of 2 for equal tumour effects. Lower light and m-THPC doses could be used compared with Photofrin PDT in combination with MMC. BCA PDT with MMC did not result in a greater tumour response compared with BCA PDT alone. Reduction in both light and photosensitiser does for effective PDT regimes in combination with MMC offers substantial clinical advantages, since both treatment time and skin photosensitisation will be reduced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Geel, I., Oppelaar, H., Oussoren, Y. et al. Mechanisms for optimising photodynamic therapy: second-generation photosensitisers in combination with mitomycin C. Br J Cancer 72, 344–350 (1995). https://doi.org/10.1038/bjc.1995.336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/bjc.1995.336

This article is cited by

Search

Quick links