Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combinatorial fluorescence energy transfer tags for multiplex biological assays

Abstract

We report an approach for developing combinatorial fluorescence energy transfer (CFET) tags by tuning the tags' fluorescence emission signatures. The tags can all be excited at a single wavelength and analyzed by a simple optical system. We constructed eight CFET tags with unique fluorescence signatures, detected by a three-color capillary array electrophoresis (CAE) system with 488 nm excitation, using only three fluorescent dyes. A 1′,2′-dideoxyribose phosphate spacer was used to separate the donor and acceptor to tune the energy transfer efficiency, generating unique fluorescence signatures. The spacer also served as an electrophoretic mobility tag to tune the mobility of CFET-labeled DNA for multiplex detection of single-nucleotide polymorphisms (SNPs). Six nucleotide variations were identified simultaneously using six CFET tags on synthetic DNA templates and on a PCR product from the retinoblastoma tumor suppressor gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Speicher, M.R., Ballard, S.G. & Ward, D.C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet. 12, 368–375 (1996).

    Article  CAS  Google Scholar 

  • Schröck, E. et al. Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497 (1996).

    Article  Google Scholar 

  • Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  • Förster, T. In Modern quantum chemistry, Istanbul Lectures, Part III. (ed. Sinanoglu, O.) 93–137 (Academic Press, New York, 1965).

  • Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).

    Article  CAS  Google Scholar 

  • Cha, A., Snyder, G.E., Selvin, P.R. & Bezanilla, F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402, 809–813 (1999).

    Article  CAS  Google Scholar 

  • Fairclough, R.H. & Cantor, C.R. The use of singlet-singlet energy transfer to study macromolecular assemblies. Methods Enzymol. 48, 347–379 (1978).

    Article  CAS  Google Scholar 

  • Ju, J., Ruan, C., Fuller, C.W., Glazer, A.N. & Mathies, R.A. Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. Proc. Natl. Acad. Sci. USA 92, 4347–4351 (1995).

    Article  CAS  Google Scholar 

  • Rosenblum, B.B. et al. New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Res. 25, 4500–4504 (1997).

    Article  CAS  Google Scholar 

  • Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  • Chen, C.T., Wagner, H. & Still, W.C. Fluorescent, sequence-selective peptide detection by synthetic small molecules. Science 279, 851–853 (1998).

    Article  CAS  Google Scholar 

  • Tyagi, S. & Kramer, F.R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308 (1996).

    Article  CAS  Google Scholar 

  • Chen, X., Zehnbauer, B., Gnirke, A. & Kwok, P.-Y. Fluorescence energy transfer detection as a homogeneous DNA diagnostic method. Proc. Natl. Acad. Sci. USA 94, 10756–10761 (1997).

    Article  CAS  Google Scholar 

  • Kheterpal, I. & Mathies, R.A. Capillary array electrophoresis DNA sequencing. Anal. Chem. 71, 31A–37A (1999).

    Article  CAS  Google Scholar 

  • Ju, J., Glazer, A.N. & Mathies, R.A. Cassette labeling for facile construction of energy transfer fluorescent primers. Nucleic Acids Res. 24, 1144–1148 (1996).

    Article  CAS  Google Scholar 

  • Landegren, U., Kaiser, R., Sanders, J. & Hood, L. A ligase-mediated gene detection technique. Science 241, 1077–1080 (1988).

    Article  CAS  Google Scholar 

  • Barany, F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl. Acad. Sci. USA 88, 189–193 (1991).

    Article  CAS  Google Scholar 

  • Schubert, E.L., Hansen, M.F. & Strong, L.C. The retinoblastoma gene and its significance. Ann. Med. 26, 177–184 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Chen for supplying the RB1 gene sample. This research was supported by a grant from National Science Foundation (Biophotonics Partnership Initiative Grant 86933) and Columbia University Genomics Initiative. We also acknowledge Amersham Pharmacia Biotech for its support of the MegaBACE capillary array electrophoresis system.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, A., Li, Z., Jones, G. et al. Combinatorial fluorescence energy transfer tags for multiplex biological assays. Nat Biotechnol 19, 756–759 (2001). https://doi.org/10.1038/90810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing