Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure and active site location of N-(1-D-carboxylethyl)-L-norvaline dehydrogenase

Abstract

Opine dehydrogenases catalyze the NAD(P)H-dependent reversible reaction to form opines that contain two asymmetric centers exhibiting either (L,L) or (D,L) stereochemistry. The first structure of a (D,L) superfamily member, N-(1-D-carboxylethyl)-L-norvaline dehydrogenase (CENDH) from Arthrobacter sp. strain 1C, has been determined at 1.8 Å resolution and the location of the bound nucleotide coenzyme has been identified. Six conserved residues cluster in the cleft between the enzyme's two domains, close to the nucleotide binding site, and are presumed to define the enzyme's catalytic machinery. Conservation of a His-Asp pair as part of this cluster suggests that the enzyme mechanism is related to the 2-hydroxy acid dehydrogenases. The pattern of sequence conservation and substitution between members of this enzyme family has permitted the tentative location of the residues that define their differential substrate specificities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo diagrams, prepared using MOLSCRIPT49, of a single subunit of CENDH.
Figure 2: Stereo representation of a CENDH dimer viewed with the two-fold axis horizontal and prepared using MOLSCRIPT.
Figure 3: The intersubunit interface of the CENDH dimer, viewed across the two-fold axis drawn using the program MIDASPLUS50.
Figure 4: a, A BOBSCRIPT51 representation of the positive difference electron density calculated with coefficients (|FND1| - |FNA1|)αiso, contoured at 1σ for the binary complex of CENDH with NAD+.
Figure 5: Structure-based alignment of the sequence for the CENDH from Arthrobacter sp. strain 1C together with the other two sequenced (D,L) opine dehydrogenases: nopaline dehydrogenase (DHNO) and lysopine dehydrogenase (DHLO) both from Agrobacterium tumefaciens.
Figure 6: a, Stereoview of the backbone trace of a CENDH subunit (orange) together with the location of the 35 residues (yellow) conserved between the sequences of CENDH, DHLO and DHNO.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Thompson, J. & Donkersloot, J.A. N-(carboxylalkyl)amino acids: occurrence, synthesis and functions. Ann. Rev. Biochem. 61, 517–557 (1992).

    Article  CAS  Google Scholar 

  2. Bevan, M. Barnes, W.M. & Chilton, M.D. Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res. 11, 369–385 (1983).

    Article  CAS  Google Scholar 

  3. Barker, R.F., Idler, K.B., Thompson, D.V. & Chilton, M.D. Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid PTI15955. Plant Mol. Biol. 2, 335 –350 (1983).

    Article  CAS  Google Scholar 

  4. Asano, Y., Yamaguchi, K. & Kondo, K. A new NAD+-dependent opine dehydrogenase from Arthrobacter sp. Strain 1C. J. Bacteriol. 171, 4466 –4471 (1989).

    Article  CAS  Google Scholar 

  5. Xuan, J. -W., Fournier, P., DeClerck, N., Chasles, M. & Gaillardin, C. Overlapping reading frames at the Lys5 locus in the yeast Yarrowia lipolytica. Mol. Cell Biol. 10 , 4795–4806 (1990).

    Article  CAS  Google Scholar 

  6. Donkersloot, J.A. & Thompson, J. Cloning, expression, sequence-analysis and site-directed-mutagenesis of the TN5306-encoded N-5(carboxylethyl)ornithine synthase from Lactococcus lactis K1. J. Biol. Chem. 270, 12226–12234 (1995).

    Article  CAS  Google Scholar 

  7. Thompson, J. & Miller, S.P.F. N-5-(1-carboxylethyl)ornithine and related [N-carboxylalkyl]-amino acids - structure, biosynthesis and function . Adv. Enz. 64, 317–399 (1991).

    CAS  Google Scholar 

  8. Drummond, M. Crown gall disease . Nature 281, 343–347 (1979).

    Article  CAS  Google Scholar 

  9. Smith, E.F. & Townsend, C.O. A plant-tumour of bacterial origin . Science 25, 671–673 (1907).

    Article  CAS  Google Scholar 

  10. DeGreve, H., Decraemer, H., Seurinck, J., Vanmontagu, M. & Schell, J. The functional organisation of the octopine Agrobacterium tumefaciens plasmid PTIB6S3. Plasmid 6, 235–248 (1981).

    Article  CAS  Google Scholar 

  11. Chilton, M.D. et al. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11, 263–271 (1977).

    Article  CAS  Google Scholar 

  12. Veluthambi, K., Krishnan, M., Gould, J.H., Smith, R.H. & Gelvin, S.B. Opines stimulate induction of the vir genes of the Agrobacterium tumefaciens Ti plasmid. J. Bacteriol. 171, 3696–3703 (1989).

    Article  CAS  Google Scholar 

  13. Kato, Y., Yamada, H. & Asano, Y. Stereoselective synthesis of opine-type secondary amine carboxylic acids by a new enzyme opine dehydrogenase. Use of recombinant enzymes. J. Mol. Catal. B1 151–160 (1996).

    Article  Google Scholar 

  14. Dairi, T. & Asano, Y. Cloning, nucleotide sequencing, and expression of an opine dehydrogenase gene from Arthrobacter sp. Strain 1C. Appl. Environ. Microbiol. 61, 3169– 3171 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Laskowski, R.A., MacArtur, M.W., Moss, D.S. & Thorton, J.M.J. PROCHECK — A program to check the stereochemical quality of protein structures. Appl. Crystallogr. 26, 283– 291 (1993).

    Article  CAS  Google Scholar 

  16. Rossmann, M.G., Moras, D. & Olsen, K.W. Chemical and biological evolution of a nucleotide-binding protein. Nature 250, 194– 199 (1974).

    Article  CAS  Google Scholar 

  17. Wierenga, R.K., De Maeyer, M.C.H. & Hol, W.G.J. Interactions of pyrophosphate moieties with α-helices in dinucleotide binding proteins. Biochemistry 24, 1346–1357 (1985).

    Article  CAS  Google Scholar 

  18. Lee, B & Richards, F.M. The interpretation of protein structures; estimation of static accessibility. J. Mol. Biol. 55 , 379–400 (1971).

    Article  CAS  Google Scholar 

  19. Jones, S. & Thornton, J.M. Protein–protein interactions: a review of protein dimer structures. Prog. Biophys. Mol. Biol. 63, 31–65 ( 1995).

    Article  CAS  Google Scholar 

  20. Abad-Zapatero, C., Griffith, J.P., Sussman, J.L. & Rossmann, M.G. Refined crystal structure of dogfish M = 4 = apo-lactate dehydrogenase. J. Mol. Biol. 198, 445–467 (1987).

    Article  CAS  Google Scholar 

  21. Baker, P.J., Britton, K.L., Rice, D.W., Rob, A. & Stillman, T.J. Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold.Implications for nucleotide specificity . J. Mol. Biol. 228, 662– 671 (1992).

    Article  CAS  Google Scholar 

  22. Grindley, H.M., Artymiuk, P.J., Rice, D.W. & Willett, P. Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm. J. Mol. Biol. 229, 707–721 (1993).

    Article  CAS  Google Scholar 

  23. Bernstein, F.C. et al. The protein data bank: a computer-based archival file for molecular structures . J. Mol. Biol. 112, 535– 542 (1977).

    Article  CAS  Google Scholar 

  24. Adams M.J., Ellis, G.H., Gover, S., Naylor, C.E., & Phillips, C. Crystallographic study of coenzyme, coenzyme analog and substrate-binding in 6-phosphogluconate dehydrogenase — implications for NADP specificity and the enzyme mechanism. Structure 2, 651–668 (1994).

    Article  CAS  Google Scholar 

  25. Rosemeyer, M.A. The biochemistry of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glutathione reductase. Cell Biochem. Funct. 5, 79–95 (1987).

    Article  CAS  Google Scholar 

  26. Monneuse, M.-O. & Rouzé, P . Sequence comparisons between Agrobacterium tumefaciens T-DNA-encoded octopine and nopaline dehydrogenases and other nucleotide-requiring enzymes: structural and evolutionary implications . J. Mol. Evol. 25, 46– 57 (1987).

    Article  CAS  Google Scholar 

  27. Gä de, G. & Grieshaber, M.K. Pyruvate reductases catalyse the formation of lactate and opines in anaerobic invertebrates. Comp. Biochem. Physiol. 83B, 255–272 (1986).

    Google Scholar 

  28. Hart, K.W. et al. The importance of arginine 171 in substrate binding by Bacillus stearothermophilus lactate dehydrogenase. Biochem. Biophys. Res. Commun. 146, 346–353 (1987).

    Article  CAS  Google Scholar 

  29. Clarke, A.R. et al. An investigation of the contribution made by the carboxylate group of an active site histidine-aspartate couple to binding and catalysis in lactate dehydrogenase . Biochemistry 27, 1617– 1622 (1988).

    Article  CAS  Google Scholar 

  30. Phillips, C., Gover, S. & Adams, M.J. Structure of 6-phosphogluconate dehydrogenase refined at 2Å resolution . Acta Crystallogr. D 51, 290– 304 (1995).

    Article  CAS  Google Scholar 

  31. Goldberg, J.D., Yoyokazu, T. & Brick, P. Crystal structure of a NAD-dependent D-glycerate dehydrogenase at 2.4 Å resolution. J. Mol. Biol., 236, 1123–1140 (1994).

    Article  CAS  Google Scholar 

  32. Stillman, T.J., Baker, P.J., Britton, K.L. & Rice, D.W. Conformational flexibility in glutamate dehydrogenase.Role of water in substrate recognition and catalysis. J. Mol. Biol. 234, 1131– 1139 (1993).

    Article  CAS  Google Scholar 

  33. Baker, P.J. et al. Analysis of the structure and substrate binding of Phormidium lapideum alanine dehydrogenase. Nature Struct. Biol. 5, 561–567 (1998).

    Article  CAS  Google Scholar 

  34. Britton, K.L. et al. Crystallization of Arthrobacter sp. Strain 1C opine dehydrogenase and its complex with NAD+. Acta Crystallogr. D54 124–126 (1998).

    CAS  Google Scholar 

  35. Hamlin, R. Multiwire area X-ray diffractometers. Meth. Enz. 114, 416 –452 (1985).

    Article  CAS  Google Scholar 

  36. Xuong, N.H., Nielsen, C., Hamlin, R. & Anderson, D. Strategy for data collection from protein crystals using a multiwire counter area detector diffractometer . J. Appl. Crystallogr. 18, 342– 350 (1985).

    Article  Google Scholar 

  37. Howard, A.J., Nielsen, C. & Young, N.H. Software for a diffractometer with multiwire area detector. Meth. Enz. 114, 452–472 ( 1985).

    Article  CAS  Google Scholar 

  38. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image data. In Joint CCP4 and ESF-EADBM Newsletter on Protein Crystallography, no. 26. (SERC Daresbury Laboratory, Warrington, UK; 1992).

    Google Scholar 

  39. Collaborative Computing Project No. 4.The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50 , 760–763 (1994).

  40. Otwinowski, Z. Maximum likelihood refinement of heavy atom parameters in isomorphous replacement and anomalous scattering. In Proceedings of the CCP4 Study Weekend. (eds Wolf, W., Evans, P.R. and Leslie, A.G.W.) 80–86 (SERC Daresbury Laboratory, Warrington, UK; 1991).

    Google Scholar 

  41. Cowtan, K. DM an automated procedure for phase improvement by density modification. In Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography no. 31. 34–38 (SERC Laboratory, Daresbury, Warrington, WA4 4AD, UK; 1994).

    Google Scholar 

  42. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  43. Jones, T.A. Interactive computer graphics: FRODO. Meth. Enz. 115, 157– 171 (1985).

    Article  CAS  Google Scholar 

  44. Tronrud, D.E., Ten Eyck, L.F. & Matthews, B.W. An efficient general-purpose least squares refinement program for macromolecular structures. Acta Crystallogr. A43, 489–501 (1987).

    Article  CAS  Google Scholar 

  45. Tronrud, D.E. Conjugate-direction minimisation: an improved method for the refinement macromolecules. Acta Crystallogr. A48, 912–916 (1992).

    Article  CAS  Google Scholar 

  46. Moews, P.C. & Kretsinger, R.H. Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. J. Mol. Biol. 91, 201– 228 (1975).

    Article  CAS  Google Scholar 

  47. Mitchell, E.M., Artymiuk, P.J., Rice, D.W. & Willett, P. Use of techniques derived from graph theory to compare secondary structure motifs in proteins. J. Mol. Biol. 212, 151 –166 (1990).

    Article  CAS  Google Scholar 

  48. Bron, C. & Kerbosch, J. Algorithm 457—finding all cliques of an undirected graph. Commun. ACM 16, 575–577 (1973).

    Article  Google Scholar 

  49. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures . J. Appl. Crystallogr. 24, 946– 950 (1991).

    Article  Google Scholar 

  50. Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Langridge, R. The MIDAS display system. J. Mol. Graphics 6, 13– 27 (1988).

    Article  CAS  Google Scholar 

  51. Esnouf, R.M. An extensively modified version of Molscript that includes greatly enhanced colouring capabilities . J. Mol. Graphics 15, 113– 138 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank the support staff at the Synchrotron Radiation Source at CCLRC Daresbury Laboratory for assistance with station alignment. This work was supported by grants from The Wellcome Trust, EU, New Energy and Industrial Development Organisation and International Scientific Research (Joint Research), supported by The Ministry of Education, Science, Sports and Culture of Japan. We acknowledge an award of a travel grant under The British Council/The Royal Society/JSPS Anglo-Japanese Scientific Exchange Scheme. The Krebs Institute is a designated BBSRC Biomolecular Sciences Centre and a member of the North of England Structural Biology Centre (NESBIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.L. Britton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Britton, K., Asano, Y. & Rice, D. Crystal structure and active site location of N-(1-D-carboxylethyl)-L-norvaline dehydrogenase. Nat Struct Mol Biol 5, 593–601 (1998). https://doi.org/10.1038/854

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/854

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing