Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bone morphogenetic protein-3 is a negative regulator of bone density

Abstract

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β (TGF-β) superfamily. Many BMPs are produced in bone and show osteogenic activity, suggesting that they may be determinants of bone mass. BMP3 was originally purified from bone as osteogenin, which induces osteogenic differentiation1. Recombinant BMP3 (rhBMP3) has no biological activity, however, leaving its role in skeletal growth unclear. Here we show that BMP3 is an antagonist of osteogenic BMPs: BMP3 dorsalizes Xenopus laevis embryos, inhibits BMP2-mediated induction of Msx2 and blocks BMP2-mediated differentiation of osteoprogenitor cells into osteoblasts. These effects appear to be mediated through activin receptors. Finally, Bmp3−/− mice have twice as much trabecular bone as wild-type littermates, indicating that BMP3, the most abundant BMP in adult bone, is a negative determinant of bone density.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BMP3 is not osteogenic in vitro.
Figure 2: BMP3 dorsalizes X. laevis embryos and inhibits BMP2-induced osteogenic differentiation.
Figure 3: BMP3 inhibits Msx2 induction in mesenchymal stem cells.
Figure 4: Generation of mice deficient in Bmp3 by homologous recombination in embryonic stem (ES) cells.
Figure 5: Increased bone density in Bmp3−/− mice.

Similar content being viewed by others

References

  1. Luyten, F.P., Yanagishita, M., Vukicevic, S., Hammonds, R.G. & Reddi, A.H. Natural bovine osteogenin and recombinant human bone morphogenetic protein-2B are equipotent in the maintenance of proteoglycans in bovine articular cartilage explant cultures. J. Biol. Chem. 267, 3691–3695 (1992).

    CAS  PubMed  Google Scholar 

  2. Luyten, F.P. et al. Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. J. Biol. Chem. 264, 13377–13380 (1989).

    CAS  PubMed  Google Scholar 

  3. Wozney, J.M. & Rosen, V. in Physiology and Pharmacology of Bone (eds. Martin, T.J. & Mundy, G.) 725–748 (Springer-Verlag, Berlin, 1993)

    Book  Google Scholar 

  4. Takao, M. et al. Identification of rat bone morphogenetic protein-3b (BMP3b), a new member of BMP-3. Biochem. Biophys. Res. Commun. 219, 656–662 (1996).

    Article  CAS  Google Scholar 

  5. Thies, R.S. et al. Recombinant human bone morphogenetic protein-2 induces osteoblastic differentiation in W-20-17 stromal cells. Endocrinology 130, 1318–1324 (1992).

    CAS  PubMed  Google Scholar 

  6. Engstrand, T. et al. Transient production of BMP-2 by allogeneic transplanted transduced cells induces bone formation. Hum. Gene Ther. 11, 205–211 (2000).

    Article  CAS  Google Scholar 

  7. Harland, R. The transforming growth factor β family and induction of the vertebrate mesoderm: bone morphogenetic proteins are ventral inducers. Proc. Natl. Acad. Sci. USA 91, 10243–10246 (1994).

    Article  CAS  Google Scholar 

  8. Hazama, M., Aona, A., Ueno, N. & Fujisawa, Y. Efficient expression of a heterodimer of bone morphogenetic protein subunits using a baculovirus expression system. Biochem. Biophys. Res. Commun. 209, 859–866 (1995).

    Article  CAS  Google Scholar 

  9. Katagiri, T. et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell Biol. 127, 1755–1766 (1994).

    Article  CAS  Google Scholar 

  10. Hollnagel, A. et al. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J. Biol. Chem. 274, 19838–19845 (1999).

    Article  CAS  Google Scholar 

  11. Liu, Y.H. et al. Premature suture closure and ectopic cranial bone in mice expressing Msx-2 transgenes in the developing skull. Proc. Natl. Acad. Sci. USA 92, 6137–6141 (1995).

    Article  CAS  Google Scholar 

  12. Brummel, T.J. et al. Characterization and relationship of dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell 78, 251–261 (1994).

    Article  CAS  Google Scholar 

  13. Penton, A. et al. Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a decapentaplegic receptor. Cell 78, 239–250 (1994).

    Article  CAS  Google Scholar 

  14. Hoodless, P.A. et al. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85, 489–500 (1996).

    Article  CAS  Google Scholar 

  15. Attisano, L. et al. Identification of human activin and TGF-β type I receptors that form hetermeric kinase complexes with type II receptors. Cell 75, 671–680 (1993).

    Article  CAS  Google Scholar 

  16. Macías-Silva, M. et al. Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J. Biol. Chem. 273, 25628–25636 (1998).

    Article  Google Scholar 

  17. Zhao, R., Lawler, A.M. & Lee, S.-J. Characterization of GDF-10 expression patterns and null mice. Dev. Biol. 212, 68–79 (1999).

    Article  CAS  Google Scholar 

  18. Filvaroff, E. et al. Inhibition of TGF-β receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass. Development 126, 4267–4279 (1999).

    CAS  PubMed  Google Scholar 

  19. Li, B. et al. Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Nature Genet. 24, 304–308 (2000).

    Article  CAS  Google Scholar 

  20. Smith, W.C. TGF β inhibitors. New and unexpected requirements in vertebrate development. Trends Genet. 15, 3–5 (1999).

    Article  CAS  Google Scholar 

  21. Piek, E. et al. Functional antagonism between activin and osteogenic protein-1 in human embryonal carcinoma cells. J. Cell Physiol. 180, 141–149 (1999).

    Article  CAS  Google Scholar 

  22. Candia, A.F. et al. Cellular interpretation of multiple TGF-β signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 124, 4467–4480 (1997).

    CAS  PubMed  Google Scholar 

  23. Ikenoue, T. et al. Inhibitory effects of activin-A on osteoblast differentiation during cultures of fetal rat calvarial cells. J. Cell Biochem. 75, 206–214 (1999).

    Article  CAS  Google Scholar 

  24. Centrella, M., McCarthy, T.L. & Canalis, E. Activin-A binding and biochemical effects in osteoblast-enriched cultures from fetal-rat parietal bone. Mol. Cell. Biol. 11, 250–258 (1991).

    Article  CAS  Google Scholar 

  25. Erlebacher, A. & Derynck, R. Increased expression of TGF-β2 in osteoblasts results in an osteoporosis-like phenotype. J. Cell Biol. 132, 195–210 (1996).

    Article  CAS  Google Scholar 

  26. Centrella, M. et al. Independent changes in type I and type II receptors for transforming growth factor β by bone morphogenetic protein 2 parallel expression of the osteoblast phenotype. Mol. Cell. Biol. 15, 3273–3281 (1995).

    Article  CAS  Google Scholar 

  27. Zmuda, J.M., Cauley, J.A. & Ferrell, R.E. Recent progress in understanding the genetic susceptibility to osteoporosis. Genet. Epidemiol. 16, 356–367 (1999).

    Article  CAS  Google Scholar 

  28. Bostrom, M.P.G. et al. Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J. Orthop. Res. 13, 357–367 (1993).

    Article  Google Scholar 

  29. Yi, S.E. et al. The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127, 621–630 (2000).

    CAS  PubMed  Google Scholar 

  30. Parfitt, A.M. et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. J. Bone Miner. Res. 2, 595–608 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. DeRobertis for assistance with X. laevis embryo injections; W. Goodman for guidance with histomorphometric analysis; D. Israel and J. Nove for generation of Bmp3-targeted ES cells; R. Peterson for help with initial breeding experiments; R. Maxson for 2 kb Msx2-Lux; K. Arora for CA-TKV; D. Litwack for rat Bmp3 cDNA; J. Massagué for ALK-4 and ActRII expression vectors; and J. Lengyel, U. Banerjee, A. Lusis and L. Birnbaumer for comments. This work was supported by NIH grant AR44528 (K.M.L.) and the Wendy Will Case Cancer Fund (K.M.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen M. Lyons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daluiski, A., Engstrand, T., Bahamonde, M. et al. Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 27, 84–88 (2001). https://doi.org/10.1038/83810

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing