Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The renaissance of fluorescence resonance energy transfer

Abstract

Recent advances in fluorescence resonance energy transfer have led to qualitative and quantitative improvements in the technique, including increased spatial resolution, distance range, and sensitivity. These advances, due largely to new fluorescent dyes, but also to new optical methods and instrumentation, have opened up new biological applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GFP based FRET was used to measure conformational changes in myosin upon ATP binding and hydrolysis.
Figure 2: FRET constructs for measuring intracellular calcium.
Figure 3: Conformational changes in a cysteine-light GFP-tagged kinesin.
Figure 4: Lanthanide-based resonance energy transfer.
Figure 5: Structure and lanthanide-based resonance energy transfer measurements of a voltage-controlled ion channel.
Figure 6: Fluorescence lifetime imaging FRET can be used to localize the position of phosphorylated biomolecules in a cell.

Similar content being viewed by others

References

  1. Forster, T. Discuss. Faraday Soc. 27, 7–17 (1959).

    Article  Google Scholar 

  2. Stryer, L. & Haugland, R.P. Proc. Natl. Acad. Sci., USA 58, 719–726 (1967).

    Article  CAS  PubMed Central  Google Scholar 

  3. Tsien, R.Y. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  4. Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T. & Sutoh, K. Nature 396, 380–383 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  5. Tsien, R.Y. & Miyawaki, A. Science 280, 1954–1955 (1998).

    Article  CAS  Google Scholar 

  6. Creemers, T.M., Lock, A.J., Subramaniam, V., Jovin, T.M. & Volker, S. Proc. Natl. Acad. Sci. USA 97, 2974–2978 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  7. Matz, M.V., et al. Nature Biotech. 17, 969–973 (1999).

    Article  CAS  Google Scholar 

  8. Wildt, S. & Deuschle, U. Nature Biotech. 17, 1175–1178 (1999).

    Article  CAS  Google Scholar 

  9. Rice, S., et al. Nature 402, 778–784 (1999).

    Article  CAS  Google Scholar 

  10. Glauner, K.S., Mannuzzu, L.M., Gandhi, C.S. & Isacoff, E.Y. Nature 402, 813–817 (1999).

    Article  CAS  Google Scholar 

  11. Cha, A., Snyder, G.E., Selvin, P.R. & Bezanilla, F. Nature 402, 809–813 (1999).

    Article  CAS  Google Scholar 

  12. Matulef, K., Flynn, G.E. & Zagotta, W.N. Neuron 24, 443–452 (1999).

    Article  CAS  Google Scholar 

  13. Hu, Y.K. & Kaplan, J.H. J. Biol. Chem. 275, 19185–19191 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  14. Callaci, S., Heyduk, E. & Heyduk, T. Mol Cell 3, 229–238 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  15. Leonard, D.A. & Kerppola, T.K. Nature Struct. Biol. 5, 877–881 (1998).

    Article  CAS  Google Scholar 

  16. Zlokarnik, G., et al. Science 279, 84–88 (1998).

    Article  CAS  Google Scholar 

  17. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Science 281, 269–272 (1998).

    Article  CAS  Google Scholar 

  18. Schobel, U., Egelhaaf, H.-J., Brecht, A., Oelkrug, D. & Gauglitz, G. Bioconjugate Chem. 10, 1107–1114 (1999).

    Article  CAS  Google Scholar 

  19. Ha, T., et al. Proc. Natl. Acad. Sci. USA 93, 624–628 (1996).

    Google Scholar 

  20. Sako, Y., Minoghchi, S. & Yanagida, T. Nature Cell Biol. 2, 168–172 (2000).

    Article  CAS  Google Scholar 

  21. Weiss, S. Nature Struct. Biol. 7, 724–729 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  22. Weiss, S. Science 283, 1676–1683 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  23. Gruber, H.J., et al. Bioconjug Chem 11, 161–166 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  24. Selvin, P.R. & Hearst, J.E. Proc. Natl. Acad. Sci. USA 91, 10024–10028 (1994).

    Article  CAS  PubMed Central  Google Scholar 

  25. Mathis, G. Clinical Chem. 41, 1391–1397 (1995).

    CAS  Google Scholar 

  26. Heyduk, E., Heyduk, T., Claus, P. & Wisniewski, J.R. J. Biol. Chem. 272, 19763–19770 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  27. Root, D.D. Proc. Natl. Acad. Sci. USA 94, 5685–5690 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  28. Xiao, M., et al. Proc. Natl. Acad. Sci. USA 95, 15309–15314 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  29. Deniz, A.A., et al. Proc. Natl. Acad. Sci. USA 96, 3670–5 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  30. Gadella, T.W.J., Jovin, T.M. & Clegg, R.M. Biophys. Chem. 48, 221–239 (1993).

    Article  CAS  Google Scholar 

  31. Gadella, T.W.J. & Jovin, T.M. J. Cell Biol. 129, 1543–1558 (1995).

    Article  CAS  Google Scholar 

  32. Ng, T., et al. Science 283, 2085–2089 (1999).

    Article  CAS  Google Scholar 

  33. Siegel, R.M., et al. Science 288, 2354–2357 (2000).

    Article  CAS  Google Scholar 

  34. Clegg, R.M. Methods Enzymol. 211, 353–388 (1992). (Note typographical error in equation 13.)

    Article  CAS  PubMed Central  Google Scholar 

  35. Murchie, A.I., et al. Nature 341, 763–766 (1989).

    Article  CAS  Google Scholar 

  36. Clegg, R.M., Murchie, A.I., Zechel, A. & Lilley, D.M. Proc. Natl. Acad. Sci. USA 90, 2994–2998 (1993).

    Article  CAS  PubMed Central  Google Scholar 

  37. Jares-Erijman, E.A. & Jovin, T.M. J. Mol. Biol. 257, 597–617 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  38. Tuschl, T., Gohlke, C., Jovin, T.M., Westhof, E. & Eckstein, F. Science 266, 785–789 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Selvin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvin, P. The renaissance of fluorescence resonance energy transfer. Nat Struct Mol Biol 7, 730–734 (2000). https://doi.org/10.1038/78948

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78948

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing