Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects in live cells of a c-myc anti-gene PNA linked to a nuclear localization signal

Abstract

Peptide nucleic acids (PNA) are synthetic homologs of nucleic acids in which the phosphate-sugar polynucleotide backbone is replaced by a flexible polyamide. In this study, a PNA construct was employed as an anti-gene agent in intact cells in culture. The cell lines studied were derived from Burkitt's lymphomas (BL) that presented a translocated and hyperexpressed c-myc oncogene. A 17-mer anti-myc PNA, complementary to a unique sequence located at the beginning of the second exon of the oncogene, and was covalently linked at its N terminus to a nuclear localization signal (NLS) (PNA-mycwt-NLS). When BL cells were exposed to PNA-mycwt-NLS, the anti-gene construct was localized predominantly in the cell nuclei and a rapid consequent downregulation of c-myc expression occurred. Under these conditions, both completion of a productive cell cycle and apoptosis were inhibited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Delivery of PNA-NLS to intact nuclei of BL cells.
Figure 2: Inhibition of c-myc expression by PNA-mycwt-NLS.
Figure 3: Growth inhibition of HBL2 cell line by PNA-mycwt-NLS.
Figure 4: Cell death induced by PNAs is unrelated to apoptosis.
Figure 5: Apoptosis prevention in BL cells exposed to F(ab′)2 α-μ-ab.

Similar content being viewed by others

References

  1. Egholm, M., Buchardt, O., Nielsen, P.E. & Berg, R.H. Peptide nucleic acids (PNA). Oligonucleotide analogues with an achiral peptide backbone. J. Am. Chem. Soc. 114, 1895–1897 (1992).

    Article  CAS  Google Scholar 

  2. Egholm, M. et al. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365, 566–568 (1993).

    Article  CAS  Google Scholar 

  3. Demidov, V.V. et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol. 48, 1310–1313 (1994).

    Article  CAS  Google Scholar 

  4. Boffa, L.C., Morris, P.L., Carpaneto, E.M., Louissant, M. & Allfrey, V.G. Invasion of the CAG triplet repeats by a complementary Peptide Nucleic Acids inhibits transcription of the Androgen Receptor and TATA-Binding Protein genes and correlates with refolding of an active nucleosome containing a unique AR gene sequence. J. Biol. Chem. 271, 13228–13233 (1996).

    Article  CAS  Google Scholar 

  5. Boffa, L.C., Carpaneto, E.M., Mariani, M.R., Louissant, M. & Allfrey, V.G. Contrasting effects of PNA invasion on chimeric DMMYC gene on transcription of its myc and PVT domains. Oncology Res. 9, 41–51 (1997).

    CAS  Google Scholar 

  6. Hanvey, C.J. et al. Antisense and antigene properties of Peptide Nucleic Acids. Science 258, 1481–1485 (1992).

    Article  CAS  Google Scholar 

  7. Gray, D.G, Basu, S. & Wickstrom E. Transformed and immortalized cellular uptake of oligodeoxynucleoside phosphorothioates, 3′-alkylamino oligodeoxynucleotides, 2′-O-methyl oligoribonucleotides, oligodeoxynucleosides methylphosphonates, and Peptides Nucleic Acids. Biochem. Pharmacol. 53, 1465–1476 (1997).

    Article  CAS  Google Scholar 

  8. Magrath, I. The pathogenesis of Burkitt's lymphoma. Adv. Cancer Res. 55, 133–270 (1990).

    Article  CAS  Google Scholar 

  9. Cutrona, G., Ulivi, M., Fais, F., Roncella, S. & Ferrarini, M. Transfection of the c-myc oncogene into normal Epstein–Barr virus-harboring B cells results in new phenotypic and functional features resembling those of Burkitt Lymphoma cells and normal centroblasts. J. Exp. Med. 181, 699–711 (1995).

    Article  CAS  Google Scholar 

  10. Spencer, C.A. & Groudine, M. Control of c-myc regulation in normal and neoplastic cells. Adv. Cancer Res. 56, 1–48 (1991).

    Article  CAS  Google Scholar 

  11. Kalderon, D., Roberts, B.L., Richardson, W.D. & Smith, E.A. Short amino acid sequence able to specify nuclear localization. Cell 39, 499–509 (1984).

    Article  CAS  Google Scholar 

  12. Gorlich, D. & Mattaj, I.W. Nucleocytoplasmic transport. Science 271, 1513–1518 (1996).

    Article  CAS  Google Scholar 

  13. Branden, L.J., Mohamed, A.J. & Edvard Smith, C.I. Apeptide nucleic acid–nuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol. 17, 784–787 (1999).

    Article  CAS  Google Scholar 

  14. Grazin, C. et al. Nucleotide sequence of the human c-myc locus: provocative open reading frame within the first exon. EMBO J. 3, 383–387 (1984).

    Article  Google Scholar 

  15. Gangamani, B.P., Kumar, V.A. & Ganesh, N.K. Spermine conjugated peptide nucleic acids (spPNA): UV and fluorescence studies of PNA–DNA hybrids with improved stability. Biochem. Biophys. Res. Commun. 240, 778–782 (1997).

    Article  CAS  Google Scholar 

  16. Colledge, W.H., Richardson, W.D., Edge, M.D. & Smith, A.E. Extensive mutagenesis of the nuclear localization signal of simian virus 40 large T antigen. Mol. Cell. Biol. 6, 4136–4138 (1986).

    Article  CAS  Google Scholar 

  17. Saphire A.C., Bark S.J. & Gerace, L. All four homochiral enantiomers of a nuclear localization sequence derived from c-myc serve as functional import signals J. Biol. Chem. 273, 29764–29769 (1998).

    Article  CAS  Google Scholar 

  18. Maky, L.A. & Bresslawer, K.Y. Calculating thermodinamics data for transition of any molecularity from equilibrium melting curves. Biopolymers 26, 1601–1620 (1987)

    Article  Google Scholar 

  19. Tomac, S. et al. Ionic effects on the stability and conformation of Peptide Nucleic Acid complexes. J. Am. Chem. Soc. 118, 5544–5552 (1996).

    Article  CAS  Google Scholar 

  20. Bentin, T. & Nielsen, P.E. Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA "breathing" dynamics. Biochemistry 35, 8863–8869 (1996).

    Article  CAS  Google Scholar 

  21. Tyler, B.M. et al. Peptide nucleic acids targeted to the neurotensin receptor and administered i.p. cross the blood barrier and specifically reduce gene expression. Proc. Natl. Acad. Sci. USA 96, 7053–7058 (1999).

    Article  CAS  Google Scholar 

  22. Boffa, L.C., Carpaneto, E.M. & Allfrey, V.G. Isolation of active genes containing CAG repeats after DNA strand invasion by Peptide Nucleic Acid. Proc. Natl. Acad. Sci. USA 92, 1901–1905 (1995).

    Article  CAS  Google Scholar 

  23. Hyrup, B. & Nielsen, P.E. Peptide Nucleic Acids (PNA): synthesis, properties and potential applications. Bioorg. Med. Chem. 4, 5–23 (1996).

    Article  CAS  Google Scholar 

  24. Roncella, S. et al. Apoptosis of Burkitt's Lymphoma cells induced by specific interaction surface IgM with a self-antigen: implications for lymphomagenesis in acquired immunodeficiency syndrome. Blood 88, 599–608 (1996).

    CAS  PubMed  Google Scholar 

  25. Hueber, A.O. et al. Requirement for the CD95 receptor–ligand pathway in c-myc-induced apoptosis. Science 278, 1205–1209 (1998).

    Google Scholar 

  26. Pooga, M. et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. 16, 856–861 (1998).

    Article  Google Scholar 

  27. Clemens, G.B., Klein, G. & Povery, S. Production by EBV infection of an EBNA-positive subline from an EBNA-negative human lymphoma cell line without detectable EBV DNA. Int. J. Cancer. 16, 125–133 (1975).

    Article  Google Scholar 

  28. Abe, M., Nozawa, Y., Wakasa, H., Ohno, H. & Fukuhara, S. Characterization and comparison of two newly established Epstein–Barr virus-negative lymphoma B-cell lines. Cancer 61, 483–490 (1988).

    Article  CAS  Google Scholar 

  29. Curtis Bird, R., Su, S. & Wu, G. in Cell biology : a laboratory handbook. (ed. Celis, J.E.) 278–281 (Academic Press, San Diego, CA; 1994).

    Google Scholar 

  30. Freid, J., Perez, A.G. & Clarkson, B.D. Rapid hypotonic method for flow cytofluorometry of monolayer cell cultures. J. Histochem. Cytochem. 26, 921–933 (1978).

    Article  Google Scholar 

  31. Ausubel, F.M. et al. in Current protocols in molecular biology (eds. Ausubel, F.M. et al.) 1, 492–498 (John Wiley & Sons, Boston, MA, 1994).

    Google Scholar 

Download references

Acknowledgements

We thank Prof. A. Alagòn (Instituto de Biotecnologia, UNAM, Cuernavaca, MX) and Prof. E. Melloni (Department of Experimental Medicine, Biochemistry Section, University of Genoa, Italy) for permission to use their microscopy facilities; X. Alvarado, A. Olvera, and Dr. M. Passalacqua for performing the confocal microscopy; and Dr. R. Stock for assistance in image analysis. This work was supported by: Associazione Italiana per la Ricerca sul Cancro (AIRC) and by CNR/CONACYT to L.C.B.; Istituto Superiore di Sanità (ISS) AIDS Project and AIRC to M.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia C. Boffa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutrona, G., Carpaneto, E., Ulivi, M. et al. Effects in live cells of a c-myc anti-gene PNA linked to a nuclear localization signal. Nat Biotechnol 18, 300–303 (2000). https://doi.org/10.1038/73745

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing