Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Monitoring simultaneous subcellular events in vitro by means of coherent multiprobe fluorescence

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multimode microscopy.
Figure 2: Photobleaching and probe stability.
Figure 3: Quantitation of multiprobe fluorescence in hepatocytes treated with tacrine.
Figure 4: Multiprobe fluorescence analysis.
Figure 5: Time-lapse images of hepatocytes treated with melittin.

References

  1. Giuliano, K.A., DeBinsio, R., Feineigle, P. & Taylor, D.L. in Motion of Living Cells (eds. Soll, D.R. & Wessels, D.) 53–66 (Wiley, New York, 1998).

    Google Scholar 

  2. Taylor, D.L. et al. Potential of machine vision light microscopy in toxicological pathology. Toxicol. Pathol. 22, 145–159 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Waggoner, A., Taylor, D.L., Seadler, A. & Dunlay, T. Multiparameter fluorescence imaging microscopy: Reagents and instruments. Hum. Pathol. 27, 494–502 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Sohal, R.S., & Dubey, A. Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Rad. Biol. Med. 16, 621–626 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Zamzami, N., Hirsch, T., Dallaporta, B., Petit, P.X. & Kroemer, G. Mitochondrial implication in accidental and programmed cell death: Apoptosis and necrosis. J. Bioenerg. Biomembr. 29, 185–193 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Johnson, L.V., Walsh, M.L., Bockus, B.J. & Chen, L.B. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J. Cell. Biol. 88, 526–535 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Monteith, D.K., Theiss, J.C., Haskins, J.R. & de la Iglesia, F.A. Functional and subcellular organelle changes in isolated rat and human hepatocytes induced by tetrahydroaminoacridine. Arch. Toxicol. 72, 147–156 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Taylor, D.L. et al. Automated light microscopy for the study of the brain: Cellular and molecular dynamics, development and tumorigenesis. Ann. NY Acad. Sci. 820, 208–228 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Garner, D.L., Thomas, C.A., Joerg, H.W., DeJarnette, J.M. & Marshall, C.E. Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol. Reprod. 57, 1401–1406 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Poot, M. et al. Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J. Histochem. Cytochem. 44, 1363–1372 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Berridge, M.J. Elementary and global aspects of calcium signaling. J. Physiol. 499, 297–306 (1997).

    Article  Google Scholar 

  12. Trump, B.F. & Berezesky, I.K. Calcium-mediated cell injury and cell death. FASEB J. 9, 219–228 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  14. Cooper, J.A. Effects of cytochalasin and phalloidin on actin. J. Cell. Biol. 105, 1473–1478 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Miki, M., Barden, J.A., dos-Remedios, C.G., Phillips, L. & Hambly, B.D. Interaction of phalloidin with chemically modified actin. Eur. J. Biochem. 165, 125–130 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Farkas, D.L. et al. Multimode light microscopy and the dynamics of molecules, cells, and tissues. Annu. Rev. Physiol. 55, 785–817 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Cornut, I., Thiaudiere, E. & Dufourcq, J. in The Amphipathic Helix (ed. Epand, R.M.) 174–219 (CRC, Boca Raton, 1993).

    Google Scholar 

  18. Schulte-Hermann, R., Bursch, W., Low-Baselli, A., Wagner, A. & Grasi-Kraupp, B. Apoptosis in the liver and its role in hepatocarcinogensis. Cell Biol. Toxicol. 13, 339–348 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Plymale, D.R. & de la Iglesia, F.A. Acridine-induced subcellular and functional changes in isolated human hepatocytes in vitro. J. Appl. Toxicol. (in the press).

  20. Feuer, G. & de la Iglesia, F.A. in Drug-Induced Hepatotoxicity Vol. 121 (eds. Cameron, R., Feuer, G. & de la Iglesia, F.A.) 46–73 (Springer-Verlag, Heidelberg, 1996).

    Google Scholar 

  21. Garini, Y. et al. in Fluorescence Imaging Spectroscopy and Microscopy, Chemical Analysis Series Vol. 137 (eds. Wang, X.F. & Herman, B.) 87–124 (Wiley, New York, 1996).

    Google Scholar 

  22. Wachman, E.S., Niu, W. & Farkas, D.L. AOTF microscope for imaging with increased speed and spectral versality. Biophys. J. 73, 1215–1222 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix A. de la Iglesia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plymale, D., Haskins, J. & Iglesia, F. Monitoring simultaneous subcellular events in vitro by means of coherent multiprobe fluorescence. Nat Med 5, 351–355 (1999). https://doi.org/10.1038/6574

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/6574

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing