Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome

Abstract

Elongation factor G (EF-G) is a GTPase that is involved in the translocation of bacterial ribosomes along messenger RNA during protein biosynthesis. In contrast to current models, EF-G-dependent GTP hydrolysis is shown to precede, and greatly accelerate, the rearrangement of the ribosome that leads to translocation. Domain IV of the EF-G structure is crucial for both rapid translocation and subsequent release of the factor from the ribosome. By coupling the free energy of GTP hydrolysis to translocation, EF-G serves as a motor protein to drive the directional movement of transfer and messenger RNAs on the ribosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Spirin, A. S. Prog. Nucl. Acids Res. Mol. Biol. 32, 75–114 (1985).

    Article  CAS  Google Scholar 

  2. Moazed, D. & Noller, H. F. Nature 342, 142–148 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Paulsen, H. & Wintermeyer, W. Biochemistry 25, 2749–2756 (1986).

    Article  CAS  Google Scholar 

  4. Spriin, A. S. FEBS Lett. 165, 280–284 (1984).

    Article  Google Scholar 

  5. Robertson, J. M. & Wintermeyer, W. J. Mol. Biol. 196, 525–540 (1987).

    Article  CAS  Google Scholar 

  6. Semenkov, Y. P., Rodnina, M. V. & Wintermeyer, W. Proc. Natl Acad. Sci. USA 93, 12183–12188 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Inoue-Yokosawa, N., Ishikawa, C. & Kaziro, Y. J. Biol. Chem. 249, 4321–4323 (1974).

    CAS  PubMed  Google Scholar 

  8. Belitsina, N. V., Glukhova, M. A. & Spirin, A. S. FEBS Lett. 54, 35–38 (1975).

    Article  CAS  Google Scholar 

  9. Modollel, J., Girbes, T. & Vazquez, D. FEBS Lett. 60, 109–113 (1975).

    Article  Google Scholar 

  10. Abel, K. & Jurnak, F. Structure 4, 229–238 (1996).

    Article  CAS  Google Scholar 

  11. Czworkowski, J., Wang, J., Steitz, T. A. & Moore, P. B. EMBO J. 13, 3661–3668 (1994).

    Article  CAS  Google Scholar 

  12. Aevarsson, A. et al. EMBO J. 13, 3669–3677 (1994).

    Article  CAS  Google Scholar 

  13. Al-Karadaghi, S., Aevarsson, A., Garber, M., Zheltonosova, J. & Liljas, A. Structure 4, 555–564 (1996).

    Article  CAS  Google Scholar 

  14. Berchtold, H. et al. Nature 365, 126–132 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Kjeldgaard, M., Nissen, P., Thirup, S. & Nyborg, J. Structure 1, 35–50 (1993).

    Article  CAS  Google Scholar 

  16. Nissen, P. et al. Science 270, 1464–1472 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Liljas, A. et al. Biochem. Cell Biol. 73, 1209–1216 (1995).

    Article  CAS  Google Scholar 

  18. Moore, P. B. Science 270, 1453–1454 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Nyborg, J. et al. Trends Biochem. Sci. 21, 81–82 (1996).

    Article  CAS  Google Scholar 

  20. Hou, Y., Lin, Y. P., Sharer, J. D. & March, P. E. J. Bacteriol. 176, 123–129 (1994).

    Article  CAS  Google Scholar 

  21. Nygård, 0. & Nilsson, L. Biochim. Biophys. Acta 824, 152–162 (1985).

    Article  Google Scholar 

  22. Omura, F., Kohno, K. & Uchida, T. Eur. J. Biochem. 180, 1–8 (1989).

    Article  CAS  Google Scholar 

  23. Robertson, J. M., Paulsen, H. & Wintermeyer, W. J. Mol. Biol. 192, 351–360 (1986).

    Article  CAS  Google Scholar 

  24. Rodnina, M. V. & Wintermeyer, W. Proc. Natl Acad. Sci. USA 92, 1945–1949 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Rodnina, M. V., Fricke, R. & Wintermeyer, W. Biochemistry 33, 12267–12275 (1994).

    Article  CAS  Google Scholar 

  26. Rodnina, M. V., Fricke, R., Kuhn, L. & Wintermeyer, W. EMBO J. 14, 2613–2619 (1995).

    Article  CAS  Google Scholar 

  27. Rodnina, M. V., Pape, T., Fricke, R., Kuhn, L. & Wintermeyer, W. J. Biol. Chem. 271, 646–652 (1996).

    Article  CAS  Google Scholar 

  28. Borowski, C., Rodnina, M. V. & Wintermeyer, W. Proc. Natl Acad. Sci. USA 93, 4202–4206 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Modollel, J. & Vazquez, D. Eur. J. Biochem. 81, 491–497 (1977).

    Article  Google Scholar 

  30. Cundliffe, E. in The Ribosome. Structure, Function, and Evolution (eds Hill, W. E. et al.) 479–490 (Am. Soc. Microbiol., Washington DC, 1990).

    Google Scholar 

  31. Schlichting, I. et al. Proc. Natl Acad. Sci. USA 86, 7687–7690 (1989).

    Article  ADS  CAS  Google Scholar 

  32. Moazed, D., Robertson, J. M. & Noller, H. F. Nature 334, 362–364 (1988).

    Article  ADS  CAS  Google Scholar 

  33. Ryan, P. C., Lu, M. & Draper, D. E. J. Mol. Biol. 221, 1257–1268 (1991).

    Article  CAS  Google Scholar 

  34. Rosendahl, G. & Douthwaite, S. Nucleic Acids Res. 23, 2396–2403 (1995).

    Article  CAS  Google Scholar 

  35. Kaziro, Y. Biochim. Biophys. Acta 505, 95–127 (1978).

    Article  CAS  Google Scholar 

  36. Robertson, J. M., Urbanke, C., Chinali, G., Wintermeyer, W. & Parmeggiani, A. J. Mol. Biol. 189, 653–662 (1986).

    Article  CAS  Google Scholar 

  37. Gavrilova, L. P., Kostiashkina, O0. E., Koteliansky, V. E., Rutkevitch, N. M. & Spirin, A. S. J. Mol. Biol. 101, 537–552 (1976).

    Article  CAS  Google Scholar 

  38. Baca, 0. G., Rohrbach, M. S. & Bodley, J. W. Biochemistry 15, 4570–4574 (1976).

    Article  CAS  Google Scholar 

  39. Johanson, U. & Hughes, D. Gene 143, 55–59 (1994).

    Article  CAS  Google Scholar 

  40. Johanson, U., Aevarsson, A., Liljas, A. & Hughes, D. J. Mol. Biol. 258, 420–432 (1996).

    Article  CAS  Google Scholar 

  41. Spirin, A. S. Cold Spring Harb. Symp. Quant. Biol. 34, 197–207 (1969).

    Article  CAS  Google Scholar 

  42. Spirin, A. S. Biochimie 69, 949–956 (1987).

    Article  CAS  Google Scholar 

  43. Serdyuk, I. et al. Biochimie 74, 299–306 (1992).

    Article  CAS  Google Scholar 

  44. Stark, H. et al. Cell (in the press).

  45. Sablin, E. P., Kull, F. J., Cooke, R., Vale, R. D. & Fletterick, R. J. Nature 380, 555–559 (1996).

    Article  ADS  CAS  Google Scholar 

  46. Yin, H. et al. Science 270, 1653–1657 (1995).

    Article  ADS  CAS  Google Scholar 

  47. West, S. C. Cell 86, 177–180 (1996).

    Article  CAS  Google Scholar 

  48. Bernasconi, C. F. Relaxation Kinetics (Academic, New York, 1976).

    Google Scholar 

  49. Aevarsson, A. J. Mol. Evol. 41, 1096–1104 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodnina, M., Savelsbergh, A., Katunin, V. et al. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37–41 (1997). https://doi.org/10.1038/385037a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385037a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing