Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA-bend modulation in a repressor-to-activator switching mechanism

Abstract

RECENT discoveries of activator proteins that distort DNA but bear no obvious activation domains have focused attention on the role of DNA structure in transcriptional regulation1. Here we describe how the transcription factor MerR can mediate repression as well as activation through stereospecific modulation of DNA structure. The represser form of MerR binds between the –10 and –35 promoter elements of the bacterial mercury-detoxification genes, PT, allowing RNA polymerase to form an inactive complex with PT and MerR at this stress-inducible promoter2,3. Upon mercuric ion binding, Hg–MerR converts this polymerase complex into the transcriptionally active or 'open' form2–4. We show here that MerR bends DNA towards itself in a manner similar to the bacterial catabolite-activator protein CAP, namely at two loci demarked by DNase I sensitivity, and that the activator conformation, Hg–MerR, relaxes these bends. This activator-induced unbending, when coupled with the previously described untwisting of the operator5, remodels the promoter and makes it a better template for the poised polymerase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tjian, R. & Maniatis, T. Cell 77, 5–8 (1994).

    Article  CAS  Google Scholar 

  2. Frantz, B. & O'Halloran, T. V. Biochemistry 29, 4747–4751 (1990).

    Article  CAS  Google Scholar 

  3. Heltzel, A., Lee, I. W., Totis, P. A. & Summers, A. O. Biochemistry 29, 9572–9584 (1990).

    Article  CAS  Google Scholar 

  4. O'Halloran, T. V., Frantz, B., Shin, M. K., Ralston, D. M. & Wright, J. G. Cell 56, 119–129 (1989).

    Article  CAS  Google Scholar 

  5. Ansari, A. Z., Chael, M. L. & O'Halloran, T. V. Nature 355, 87–89 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Comess, K. M., Shewchuk, L. M., Ivanetich, K. & Walsh, C. T. Biochemistry 33, 4175–4186 (1994).

    Article  CAS  Google Scholar 

  7. Parkhill, J. & Brown, N. L. Nucleic Acids Res. 18, 5157–5162 (1990).

    Article  CAS  Google Scholar 

  8. Parkhill, J., Ansari, A. Z., Wright, J., Brown, N. L. & O'Halloran, T. V. EMBO J. 12, 413–421 (1993).

    Article  CAS  Google Scholar 

  9. Ansari, A. Z. & O'Halloran, T. V. in Transcription: Mechanisms and Regulation (eds Conaway, R. C. & Conaway, J. W.) 369–386 (Raven, New York, 1994).

    Google Scholar 

  10. Zinkel, S. S. & Crothers, D. M. Nature 328, 178–181 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Salvo, J. J. & Grindley, N. D. F. Nucleic Acids Res. 15, 9771–9779 (1987).

    Article  CAS  Google Scholar 

  12. Crothers, D. M., Gartenberg, M. R. & Shrader, T. E. Meth. Enzym. 208, 118–146 (1991).

    Article  CAS  Google Scholar 

  13. Drak, J. & Crothers, D. M. Proc. natn. Acad. Sci. U.S.A. 88, 3074–3078 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Kahn, J. D., Yun, E. & Crothers, D. M. Nature 368, 163–166 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Lahm, A., Weston, S. A. & Suck, D. Nucleic Acids molec. Biol. 5, 171–186 (1991).

    Article  CAS  Google Scholar 

  16. Hogan, M. E., Roberson, M. W. & Austin, R. H. Proc. natn. Acad. Sci. U.S.A. 86, 9273–9277 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Travers, A. A. & Klug, A. in DNA Topology an its Biological Effects (eds Cozzarelli, N. R. & Wang, J. C.) 57–106 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1990).

    Google Scholar 

  18. Gaston, K., Bell, A., Kolb, A., Buc, H. & Busby, S. Cell 62, 733–743 (1990).

    Article  CAS  Google Scholar 

  19. Schultz, S. C., Shields, G. C. & Steitz, T. A. Science 253, 1001–1007 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Raumann, B. E., Rould, M. A., Pabo, C. O. & Sauer, R. T. Nature 367, 754–757 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Burkhoff, A. M. & Tullius, T. D. Nature 331, 455–457 (1989).

    Article  ADS  Google Scholar 

  22. Hunter, C. A. J. molec. Biol. 256, 1025–1054 (1993).

    Article  Google Scholar 

  23. Cozzarelli, N. R., Boles, T. C. & White, J. H. in DNA Topology and its Biological Effects (eds Cozzarelli, N. R. & Wang, J. C.) 139–184 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1990).

    Google Scholar 

  24. Ptashne, M. in A Genetic Switch 13–123 (Cell press & Blackwell Scientific, Cambridge, MA, 1986).

    Google Scholar 

  25. Wang, L., Helmann, J. D. & Winans, S. C. Cell 69, 659–667 (1992).

    Article  CAS  Google Scholar 

  26. Storz, G., Tartaglia, L. A. & Ames, B. N. Science 248, 189–194 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Hidalgo, E. & Demple, B. EMBO J. 13, 138–146 (1993).

    Article  Google Scholar 

  28. Snyder, U. K., Thompson, J. F. & Landy, A. Nature 341, 255–257 (1989).

    Article  ADS  CAS  Google Scholar 

  29. Ross, W., Park, S.-J. & Summers, A. O. J. Bact. 171, 4009–4018 (1989).

    Article  CAS  Google Scholar 

  30. Boroweic, J. A. & Gralla, J. D. Biochemistry 25, 5051–5057 (1986).

    Article  Google Scholar 

  31. Müller, H.-P. & Varmus, H. E. EMBO J. 13, 4704–4714 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, A., Bradner, J. & O'Halloran, T. DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374, 370–375 (1995). https://doi.org/10.1038/374370a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374370a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing