Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generating loss-of-function phenotypes of the fushi tarazu gene with a targeted ribozyme in Drosophila

Abstract

THE ability to isolate gene sequences and analyse their expression patterns has generated demand for mutations created to assess their biological functions. In Drosophila melanogaster this can be achieved by traditional mutagenesis, but this is time-consuming, labour-intensive and not always successful. Moreover, the functions of genes that are expressed several times during develop-ment are often obscured in the later stages because of disruptions caused by the absence of early gene function. Here we propose a new strategy to create conditional knock-out mutations using a targeted heat-inducible ribozyme. Ribozymes are catalytic RNA molecules that specifically cleave RNAs1–11 and are potentially useful for studying gene function during animal development because the expression of critical regulatory genes is usually low and their function is often dosage-dependent. The ribozyme can be delivered to a specific region or at a particular developmental stage using a region-specific or inducible promoter. The Drosophila fushi tarazu (ftz) gene is a good candidate for testing this approach12–17. We generated transgenic flies carrying a ribozyme against the ftz gene. The two developmental phases of ftz function can be distinguished by timed induction of the ribozyme. Activation of the ribozyme in the blastoderm disrupts the ftz seven-stripe pattern and produces ftz-like pair-rule defects in larvae. The involvement of ftz in neurogenesis was verified by activation of the ribozyme during the early phase of formation of the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cech, T. R. Science 236, 1532–1539 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Forster, A. C. & Symons, R. H. Cell 49, 211–220 (1987).

    Article  CAS  Google Scholar 

  3. Haseloff, J. & Gerlach, W. L. Nature 334, 585–591 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Uhlenbeck, O. C. Nature 328, 596–600 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Ruffner, D. E., Stormo, G. D. & Uhlenbeck, O. C. Biochemistry 29, 10695–10702 (1990).

    Article  CAS  Google Scholar 

  6. Cotten, M. & Birnstiel, M. L. EMBO J. 8, 3861–3866 (1989).

    Article  CAS  Google Scholar 

  7. Cameron, F. H. & Jennings, P. A. Proc. natn. Acad. Sci. U.S.A. 86, 9139–9143 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Sarver, N. et al. Science 247, 1222–1225 (1990).

    Article  ADS  CAS  Google Scholar 

  9. L'Huillier, P. J., Davis, S. R. & Bellamy, A. R. EMBO J. 11, 4411–4418 (1992).

    Article  CAS  Google Scholar 

  10. Zheng, X. & Whitton, J. L. J. Virol. 66, 1361–1369 (1992).

    Google Scholar 

  11. Stelnecke, P., Herget, T. & Schreier, P. H. EMBO J. 11, 1525–1530 (1992).

    Article  Google Scholar 

  12. Laughton, A. & Scott, M. P. Nature 310, 25–31 (1984).

    Article  ADS  Google Scholar 

  13. Carroll, S. B. & Scott, M. P. Cell 43, 47–57 (1985).

    Article  CAS  Google Scholar 

  14. Wakimoto, B. T., Turner, F. R. & Kaufman, T. C. Devl Biol. 102, 147–172 (1984).

    Article  CAS  Google Scholar 

  15. Weiner, A. J., Scott, M. P. & Kaufman, T. C. Cell 37, 843–851 (1984).

    Article  CAS  Google Scholar 

  16. Hafen, E., Kuroiwa, A. & Gehring, W. J. Cell 37, 833–841 (1984).

    Article  CAS  Google Scholar 

  17. Doe, C. Q., Hiromi, Y., Gehring, W. J. & Goodman, C. S. Science 239, 170–175 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Karr, T. L. & Kornberg, T. B. Development 105, 95–103 (1989).

    Google Scholar 

  19. Furukubo-Tokunaga, K. et al. Genes Dev. 6, 1082–1096 (1992).

    Article  CAS  Google Scholar 

  20. Patel, N. H., Schafer, B., Goodman, C. C. & Holmgren, R. Genes Dev. 3, 890–904 (1989).

    Article  CAS  Google Scholar 

  21. Hiromi, Y. & Gehring, W. J. Cell 50, 963–974 (1987).

    Article  CAS  Google Scholar 

  22. Pirotta, V. in Vectors: A Survey of Molecular Cloning Vectors and their Uses (eds Rodriguez, R. L. & Reinhardt, D. T.) 437–456 (Butterworths, Boston, 1988).

    Book  Google Scholar 

  23. Karess, R. E. & Rubin, G. M. Cell 38, 135–146 (1984).

    Article  CAS  Google Scholar 

  24. Rubin, G. M. & Spradling, A. C. Science 218, 348–353 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Jürgens, G., Wieschaus, E., Nüsslein-Volhard, C. & Kluding, H. Roux's Arch. dev. Biol. 193, 283–295 (1984).

    Article  Google Scholar 

  26. Zhao, J. J., Lazzarini, R. A. & Pick, L. Genes Dev. 7, 343–354 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Pick, L. Generating loss-of-function phenotypes of the fushi tarazu gene with a targeted ribozyme in Drosophila. Nature 365, 448–451 (1993). https://doi.org/10.1038/365448a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/365448a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing