Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced reactivity of fullerene cations containing adjacent pentagons

Abstract

GEOMETRICALconstraints, first identified by Euler, dictate that all of the closed carbon cages known as fullerenes must contain twelve pentagonal rings of carbon atoms1. In all of the fullerenes synthesized so far, each pentagon is surrounded by hexagonal rings2. Indeed, this has been proposed as a criterion for fullerene stability—the 'isolated-pentagon rule'1,3—on the basis that adjacent pentagons are expected to be chemically reactive. Buck-minsterfullerene (C60) is the smallest fullerene for which the isolated-pentagon rule can be satisfied; smaller, adjacent-pentagon fullerenes have not been formed in bulk, but have been identified previously as cations4–6. Here we report experimental evidence for the heightened chemical reactivity of cations of the adjacent-pentagon fullerenes C56 and C58, relative to Cx+60, which provides support for the basic assumptions underlying the isolated-pentagon rule. Our findings suggest that, if fullerenes such as C56 and C58 are produced as intermediates or byproducts of C60 generation either in the laboratory or in natural environments, they should form derivatives readily.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kroto, H. W. Nature 329, 529–531 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Diederich, F. & Whetten, R. L. Accts. Chem. Res. 25, 119–126 (1992).

    Article  CAS  Google Scholar 

  3. Smalley, R. E. Accts. Chem. Res. 25, 98–105 (1992).

    Article  CAS  Google Scholar 

  4. Rohlfing, E. A., Cox, D. M. & Kaldor, A. J. chem. Phys. 81, 3322–3330 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. Nature 318, 162–163 (1985).

    Article  ADS  CAS  Google Scholar 

  6. von Helden, G., Hsu, M.-T., Kemper, P. R. & Bowers, M. T. J. chem. Phys. 95, 3835–3837 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Mackay, G. I., Vlachos, G. D., Bohme, D. K. & Schiff, H. I. Int. J. Mass Spectrom. Ion Phys. 36, 259–270 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Raksit, A. B. & Bohme, D. K. Int. J. Mass Spectrom. Ion Phys. 55, 69–82 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Petrie, S., Javahery, G., Wang, J. & Bohme, D. K. J. Am. chem. Soc. 114, 9177–9181 (1992).

    Article  CAS  Google Scholar 

  10. Petrie, S., Javahery, G. & Bohme, D. K. J. Am. chem. Soc. 115, 1445–1450 (1993).

    Article  CAS  Google Scholar 

  11. Schwarz, H., Weiske, T., Bohme, D. K. & Hrušác, J. in Buckminsterfullerenes (eds Billups, W. E. & Ciufolini, M. A.) 257–283 (VCH, New York, 1993).

    Google Scholar 

  12. Callahan, J. H., Ross, M. M., Weiske, T. & Schwarz, H. J. phys. Chem. 97, 20–22 (1993).

    Article  CAS  Google Scholar 

  13. O'Brien, S. C., Heath, J. R., Curl, R. F. & Smalley, R. E. J. chem. Phys. 88, 220–230 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Stone, A. J. & Wales, D. J. Chem. Phys. Lett. 128, 501–503 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Herbst, E. & Dunbar, R. C. Mon. Not. R. astr. Soc. 253, 341–349 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Bakowies, D. & Thiel, W. J. Am. chem. Soc. 113, 3704–3714 (1991).

    Article  CAS  Google Scholar 

  17. Yi, J.-Y. & Bernholc, J. J. chem. Phys. 96, 8634–8636 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Hare, J. P. & Kroto, H. W. Accts. Chem. Res. 25, 106–112 (1992).

    Article  CAS  Google Scholar 

  19. Kroto, H. W. & Jura, M. Astr. Astrophys. 263, 275–280 (1992).

    ADS  CAS  Google Scholar 

  20. Javahery, G., Petrie, S., Wang, J. & Bohme, D. K. Chem. Phys. Lett. 195, 7–10 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Petrie, S., Javahery, G. & Bohme, D. K. Astr. Astrophys. 271, 662–674 (1993).

    ADS  CAS  Google Scholar 

  22. Millar, T. J. Mon. Not. R. astr. Soc. 259, 35P–39P (1992).

    Article  ADS  Google Scholar 

  23. von Helden, G., Gotts, N. G. & Bowers, M. T. Nature 363, 60–63 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Su, T. & Bowers, M. T. Int. J. Mass Spectrom. Ion Phys. 12, 347–356 (1973).

    Article  ADS  CAS  Google Scholar 

  25. Javahery, G., Petrie, S., Wincel, H., Wang, J. & Bohme, D. K. J. Am. chem. Soc. 115, 5716–5722 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrie, S., Bohme, D. Enhanced reactivity of fullerene cations containing adjacent pentagons. Nature 365, 426–429 (1993). https://doi.org/10.1038/365426a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365426a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing