Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evaluating the role of climate cooling in iceberg production and the Heinrich events

Abstract

BOND et al.1 recently presented evidence for the frequent occurrence, in the Pleistocene epoch, of periods of massive iceberg discharge into the North Atlantic ocean ('Heinrich events'), each lasting a few thousand years. The cause of these events is uncertain, but one possibility1 is repeated advances of the Laurentide ice sheet during episodes of cooler climate. Here I examine this idea, using a model of the Laurentide ice sheet driven by orbitally forced variations in insolation, with and without three additional 3,000-yr-long cooling episodes, imposed just before the occurrence of the three most recent Heinrich events (HI, H2 and H3). In the model, the cooling event preceding HI (when the climate was relatively warm and deglaciation was about to begin) led to increased calving, but those preceding H2 and H3 (which occurred during the last ice age, when the climate was very cold) led to reduced iceberg calving. It thus seems unlikely that the Heinrich events generally reflect a direct response of the Laurentide ice sheet to climate cooling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bond, G. et al. Nature 360, 245–249 (1992).

    Article  ADS  Google Scholar 

  2. Andrews, J. T. & Mahaffy, M. A. W. Quat. Res. 6, 167–183 (1976).

    Article  Google Scholar 

  3. Budd, W. F. & Smith, I. N. Sea Level, Ice, and Climatic Change (Proc. of the Canberra Symp., Dec. 1979) IAHS Publ. No. 131, 369–409 (1981).

    Google Scholar 

  4. Oerlemans, J. Nature 287, 430–432 (1980).

    Article  ADS  Google Scholar 

  5. Pollard, D. Nature 296, 334–338 (1982).

    Article  ADS  Google Scholar 

  6. Oerlemans, J. Clim. Change 4, 353–374 (1982).

    Article  ADS  Google Scholar 

  7. Hyde, W. T. & Peltier, W. R. J. atmos. Sci. 44, 1351–1374 (1985).

    Article  ADS  Google Scholar 

  8. Deblonde, G. & Peltier, W. R. J. geophys. Res. 96, 9189–9215 (1991).

    Article  ADS  Google Scholar 

  9. Gallée, H., Van Ypersele, J. P., Fichefet, T., Tricot, C. & Berger, A. J. geophys. Res. 96 (D7), 13139–13161 (1991).

    Article  ADS  Google Scholar 

  10. Oerlemans, J. & Hoogendoorn, N. C. J. Glaciol. 35, 399–405 (1989).

    Article  ADS  Google Scholar 

  11. Oerlemans, J. The Holocene 1, 40–49 (1991).

    Article  ADS  Google Scholar 

  12. Oerlemans, J. & Fortuin, J. P. F. Science 258, 115–117 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Broccoli, A. J. & Manabe, S. Clim. Dynamics 1, 87–99 (1987).

    Article  ADS  Google Scholar 

  14. Lorius, C., Jouzel, J., Raynaud, D., Hansen, J. & Le Treut, H. Nature 347, 139–145 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Reeh, N. & Gundestrup, N. S. J. Glaciol. 31, 198–200 (1985).

    Article  ADS  Google Scholar 

  16. Fortuin, J. P. F. The Surface Mass Balance and Temperature of Antarctica (Univ. of Utrecht, The Netherlands, 1992).

    Google Scholar 

  17. Manabe, S. & Broccoli, A. J. J. geophys. Res. 90 (C2), 2167–2190 (1985).

    Article  ADS  Google Scholar 

  18. Sugden, D. E. Arctic Alp. Res. 9, 21–47 (1977).

    Article  Google Scholar 

  19. Denton, G. H. & Hughes, D. J. The Last Great Ice Sheets (Wiley-lnterscience, New York, 1981).

    Google Scholar 

  20. Fisher, D. A., Reeh, N. & Langley, K. Geogr. phys. Quat. 39, 229–238 (1985).

    Google Scholar 

  21. Koerner, R. M. Nature 343, 630–631 (1980).

    Article  ADS  Google Scholar 

  22. Anderson, P. M. et al. (COHMAP Members) Science 241, 1043–1052 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oerlemans, J. Evaluating the role of climate cooling in iceberg production and the Heinrich events. Nature 364, 783–786 (1993). https://doi.org/10.1038/364783a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364783a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing