Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Short alanine-based peptides may form 310-helices and not α-helices in aqueous solution

Abstract

SHORT alanine peptides, containing 16 or 17 residues, appear to form α-helices in aqueous solution1–4. But the main spectroscopic analyses used on helical peptides (circular dichroism5 and nuclear magnetic resonance6–8) cannot distinguish between an α-helix (in which the ith residue is hydrogen-bonded to residue i+4; ref. 9) and the next most common peptide helix, the 310-helix10 (ii + 3 hydrogen-bonding). To address this problem we have designed single and doubly spin-labelled analogues of alanine-based peptides in which the nitroxide spin label forms an unbranched side chain extending from the sulphur atom of a cysteine residue. Here we report the circular dichroism, Fourier-transform infrared and electron-spin resonance spectra of these peptides under helix-forming conditions. The infrared absorbance gives an amide I' band with a frequency that is substantially different from that observed for α-helices. The electron-spin resonance spectra of doubly labelled helices show that the ranking of distances between side chains, around a single turn (residues 4–8), is inconsistent with an α-helical structure. Our experiments suggest that the more likely peptide geometry is a 310-helix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marqusee, S., Robbins, V. H. & Baldwin, R. L. Proc. natn. Acad. Sci. U.S.A. 86, 5286–5290 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Merutka, G., Lipton, W., Shalongo, W., Park, S. H. & Stellwagen, E. Biochemistry 29, 7511–7515 (1990).

    Article  CAS  Google Scholar 

  3. Chakrabartty, A., Schellman, J. A. & Baldwin, R. L. Nature 351, 586–588 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Padmanabhan, S., Marqusee, S., Ridgeway, T., Laue, T. M. & Baldwin, R. L. Nature 344, 268–270 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Manning, M. C. & Woody, R. W. Biopolymers 31, 569–586 (1991).

    Article  CAS  Google Scholar 

  6. Osterhout, J. J. et al. Biochemistry 28, 7059–7064 (1989).

    Article  CAS  Google Scholar 

  7. Bradley, E. K., Thomason, J. F., Cohen, F. E., Kosen, P. A. & Kuntz, I. D. J. molec. Biol. 215, 607–622 (1990).

    Article  CAS  Google Scholar 

  8. Würthrich, K. NMR of Proteins and Nucleic Acids (Wiley, New York, 1986).

    Google Scholar 

  9. Voet, D. & Voet, J. G. Biochemistry (Wiley, New York, 1990).

    Google Scholar 

  10. Barlow, D. J. & Thornton, J. M. J. molec. Biol. 201, 601–619 (1988).

    Article  CAS  Google Scholar 

  11. Todd, A. P. & Millhauser, G. L. Biochemistry 30, 5515–5523 (1991).

    Article  CAS  Google Scholar 

  12. Miick, S. M., Rodd, A. P. & Millhauser, G. L. Biochemistry 30, 9498–9503 (1991).

    Article  CAS  Google Scholar 

  13. Byler, D. M. & Susi, H. Biopolymers 25, 469–487 (1986).

    Article  CAS  Google Scholar 

  14. Kennedy, D. F., Crisma, M., Toniolo, C. & Chapman, D. Biochemistry 30, 6541–6548 (1991).

    Article  CAS  Google Scholar 

  15. Malcolm, B. R. Biopolymers 22, 319–321 (1983).

    Article  CAS  Google Scholar 

  16. Dwivedi, A. M., Krimm, S. & Malcolm, B. R. Biopolymers 23, 2025–2065 (1984).

    Article  CAS  Google Scholar 

  17. Prestrelski, S. J., Byler, D. M. & Thompson, M. P. Int. J. Peptide Protein Res. 37, 508–512 (1991).

    Article  CAS  Google Scholar 

  18. Luckhurst, G. R. in Spin labeling: Theory and Applications (ed. Berliner, L. J.) Ch. 4 (Academic, New York, 1976).

    Google Scholar 

  19. Falle, H. R. et al. Molec. Phys. 11, 49–56 (1966).

    Article  ADS  CAS  Google Scholar 

  20. Lemaire, H., Rassat, A., Rey, P. & Luckhurst, G. R. Molec. Phys. 14, 441–447 (1968).

    Article  ADS  CAS  Google Scholar 

  21. Krystek, S. R. et al. FEBS Lett. 299, 255–261 (1992).

    Article  CAS  Google Scholar 

  22. Toniolo, C. & Benedetti, E. Trends. biochem. Sci. 16, 350–353 (1991).

    Article  CAS  Google Scholar 

  23. Karle, I. L. & Balaram, P. Biochemistry 29, 6747–6756 (1990).

    Article  CAS  Google Scholar 

  24. Gautam, B., Bagchi, K. & Kuki, A. Biopolymers 31, 1763–1774 (1991).

    Article  Google Scholar 

  25. Tirado-Rives, J. & Jorgensen, W. L. Biochemistry 30, 3864–3871 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miick, S., Martinez, G., Fiori, W. et al. Short alanine-based peptides may form 310-helices and not α-helices in aqueous solution. Nature 359, 653–655 (1992). https://doi.org/10.1038/359653a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359653a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing