Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conserved sequence motifs in the small subunit of human general transcription factor TFIIE

Abstract

A GENERAL initiation factor, TFIIE, is essential for transcription initiation by RNA polymerase II in conjunction with other general factors1,2. TFIIE is a heterotetramer containing two subunits of relative molecular mass 57,000 (TFIIE-α) and two of 34,000 (TFIIE-β)3,4. TFIIE-β is required in conjunction with TFIIE-α for transcription initiation. Here we report the cloning and expression of a complementary DNA encoding a functional human TFIIE-β. Recombinant TFIIE-β could replace the natural TFIIE-β for transcription in conjunction with TFIIE-α. Amino-acid sequence comparisons reveal regions with sequence similarities to: subregion 3 of bacterial factors6; a region of RAP30 (the small subunit of TFIIF) with sequence similarity to a a factor subregion implicated in binding to RNA polymerase7; and a portion of the basic region-helix-loop-helix motif found in several enhancer-binding proteins8,10. These potential homologies have implications for the role of TFIIE in preinitiation complex assembly and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Saltzman, A. G. & Weinmann, R. FASEB J. 3, 1723–1733 (1989).

    Article  CAS  Google Scholar 

  2. Sawadogo, M. & Sentenac, A. A. Rev. Biochem. 59, 711–754 (1990).

    Article  CAS  Google Scholar 

  3. Inostroza, J., Flores, O. & Reinberg, D. J. biol. Chem. 266, 9304–9308 (1991).

    CAS  Google Scholar 

  4. Ohkuma, Y., Sumimoto, H., Horikoshi, M. & Roeder, R. G. Proc. natn. Acad. Sci. U.S.A. 87, 9163–9167 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Ohkuma, Y. et al. Nature 354, 398–401 (1991).

    Article  ADS  CAS  Google Scholar 

  6. McCracken, S. & Greenblatt, J. Science 235, 900–902 (1991).

    Article  ADS  Google Scholar 

  7. Helmann, J. D. & Chamberlin, M. J. A. Rev. Biochem. 57, 839–872 (1988).

    Article  CAS  Google Scholar 

  8. Murre, C., McCaw, P. S. & Baltimore, D. Cell 56, 777–783 (1989).

    Article  CAS  Google Scholar 

  9. Lüscher, B. & Eisenman, R. N. Genes Dev. 4, 2235–2241 (1990).

    Article  Google Scholar 

  10. Olson, E. N. Genes Dev. 4, 1454–1461 (1990).

    Article  CAS  Google Scholar 

  11. Scheidereit, C. et al. Nature 336, 551–557 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Rosenberg, A. H. et al. Gene 56, 125–135 (1987).

    Article  CAS  Google Scholar 

  13. Matsui, T., Segall, J., Weil, P. A. & Roeder, R. G. J. biol. Chem. 255, 11992–11996 (1980).

    CAS  PubMed  Google Scholar 

  14. Sawadogo, M. & Roeder, R. G. Proc. natn. Acad. Sci. U.S.A. 82, 4394–4398 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Sumimoto, H., Ohkuma, Y., Yamamoto, T., Horikoshi, M. & Roeder, R. G. Proc. natn. Acad. Sci. U.S.A. 87, 9158–9162 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Gribskov, M. & Burgess, R. R. Nucleic Acids Res. 14, 6745–6763 (1986).

    Article  CAS  Google Scholar 

  17. Horikoshi, M. et al. Nature 341, 299–303 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Malik, S. et al. Proc. natn. Acad. Sci. U.S.A. (in the press).

  19. Flores, O., Maldonado, E. & Reinberg, D. J. biol. Chem. 264, 8913–8921 (1989).

    CAS  Google Scholar 

  20. Johnson, P. F. & McKnight, S. L. A. Rev. Biochem. 58, 799–839 (1990).

    Article  Google Scholar 

  21. Reinberg, D. & Roeder, R. G. J. biol. Chem. 262, 3310–3321 (1987).

    CAS  Google Scholar 

  22. Sawadogo, M. & Roeder, R. G. J. biol. Chem. 259, 5321–5326 (1984).

    CAS  PubMed  Google Scholar 

  23. Conaway, J. W., Hanley, J., Garrett, K. P. & Conaway, K. P. J. biol. Chem. 266, 7804–7811 (1991).

    CAS  PubMed  Google Scholar 

  24. Gorbalenya, A. E. & Koonin, E. V. Nucleic Acids Res. 17, 8413–8440 (1989).

    Article  CAS  Google Scholar 

  25. Leszczynski, J. F. & Rose, G. D. Science 234, 849–855 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Kozak, M. Nucleic Acids Res. 12, 857–872 (1984).

    Article  CAS  Google Scholar 

  27. Hoffmann, A. et al. Nature 346, 387–390 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Davis, R. L., Weintraub, H. & Lassar, A. B. Cell 51, 987–1000 (1987).

    Article  CAS  Google Scholar 

  29. Hu, Y.-F., Lüscher, B., Admon, A., Mermod, N. & Tjian, R. Genes Dev. 4, 1741–1752 (1990).

    Article  CAS  Google Scholar 

  30. Cai, M. & Davis, R. W. Cell 61, 437–446 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumimoto, H., Ohkuma, Y., Sinn, E. et al. Conserved sequence motifs in the small subunit of human general transcription factor TFIIE. Nature 354, 401–404 (1991). https://doi.org/10.1038/354401a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354401a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing