Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Development of the light response in neonatal mammalian rods

Abstract

THE sensitivity to light is low in many neonatal mammals when compared with that in the adult. In human infants at one month of age, for example, the dark-adapted sensitivity for detection of large stimuli is 50 times lower than in the adult1–4, and in rats the overall sensitivity of the neonatal retina is also low compared with the adult5,6. This low sensitivity in the neonate has been attributed to a number of factors5–11, but the possibility that the photoreceptors themselves might be an important limitation on the overall visual sensitivity has not so far been clearly established. Here we record the light response of single neonatal rat rods and find that the sensitivity is considerably lower than in the adult. The response to a single photoisomerization is normal in the neonate, and the sensitivity deficit can therefore be attributed to a low level of functional rhodopsin. Opsin, the protein component of rhodopsin, must be present in normal amounts, as the sensitivity can be restored to adult levels by treating the retina with 9-cis retinal, an active homologue of the native chromophore 11-cis retinal. The low sensitivity of photoreceptors in the neonate can therefore be attributed mainly to a low concentration of ll-cis retinal in the developing retina.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lewis, J. M. & Haig, C. J. Pediat. 15, 812–823 (1939).

    Article  Google Scholar 

  2. Powers, M. K., Schneck, M. & Teller, D. Y. Vision Res. 21, 1005–1016 (1981).

    Article  CAS  Google Scholar 

  3. Hamer, R. D. & Schneck, M. Vision Res. 24, 77–85 (1984).

    Article  CAS  Google Scholar 

  4. Fulton, A. B., Hansen, R. M., Yeh, Y.-L. & Tyler, C. W. Vision Res. 31, 1259–1269 (1991).

    Article  CAS  Google Scholar 

  5. Fulton, A. B. & Graves, A. L. Vision Res. 20, 819–826 (1980).

    Article  CAS  Google Scholar 

  6. Fulton, A. B. & Baker, B. N. Invest. Ophthalmol. Vis. Sci. 25, 647–651 (1984).

    CAS  PubMed  Google Scholar 

  7. Brown, A. M. Vision Res. 26, 707–710 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Carter-Dawson, L. et al. Devl Biol 116, 431–438 (1986).

    Article  CAS  Google Scholar 

  9. Wilson, H. R. Vision Res. 28, 611–628 (1988).

    Article  CAS  Google Scholar 

  10. Jacobs, D. S. & Blakemore, C. B. Vison Res. 28, 947–958 (1988).

    Article  CAS  Google Scholar 

  11. Banks, M. S. & Bennett, P. J. J. Opt. Soc.Am. A 5, 2059–2079 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Dowling, J. E. & Sidman, R. L. J. Cell Biol. 14, 73–105 (1961).

    Article  Google Scholar 

  13. Baylor, D. A., Lamb, T. D. & Yau, K.-W. J. Physiol. 288, 589–611 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lamb, T. D., McNaughton, P. A. & Yau, K.-W. J. Physiol. 319, 463–496 (1981).

    Article  CAS  Google Scholar 

  15. Baylor, D. A., Nunn, B. J. & Schnapf, J. L. J. Physiol. 357, 575–607 (1984).

    Article  CAS  Google Scholar 

  16. Alpern, M., Fulton, A. B. & Baker, B. N. Vision Res. 27, 1459–1470 (1987).

    Article  CAS  Google Scholar 

  17. Baylor, D. A., Lamb, T. D. & Yau, K.-W. J. Physiol. 288, 613–634 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Young, R. W. Invest Ophthalmol. Vis. Sci. 15, 700–725 (1976).

    CAS  PubMed  Google Scholar 

  19. McNaughton, P. A., Yau, K.-W. & Lamb, T. D. Nature 283, 85–87 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Makino, C. L. et al. J. Physiol. 424, 545–560 (1990).

    Article  CAS  Google Scholar 

  21. Wiesel, T. N. Nature 299, 583–591 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Brockes, J. P. Neuron 2, 1285–1294 (1989).

    Article  CAS  Google Scholar 

  23. Hodgkin, A. L., McNaughton, P. A. & Nunn, B. J. J. Physiol. 358, 447–468 (1985).

    Article  CAS  Google Scholar 

  24. Noell, W. K. Vision Res. 20, 1163–1171, 1980.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratto, G., Robinson, D., Yan, B. et al. Development of the light response in neonatal mammalian rods. Nature 351, 654–657 (1991). https://doi.org/10.1038/351654a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351654a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing