Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars

Abstract

The study of astronomical objects using electromagnetic radiation involves four basic observational approaches: imaging, spectroscopy, photometry (accurate counting of the photons received) and polarimetry (measurement of the polarizations of the observed photons). In contrast to observations at other wavelengths, a lack of sensitivity has prevented X-ray astronomy from making use of polarimetry. Yet such a technique could provide a direct picture of the state of matter in extreme magnetic and gravitational fields1,2,3,4,5,6, and has the potential to resolve the internal structures of compact sources that would otherwise remain inaccessible, even to X-ray interferometry7. In binary pulsars, for example, we could directly ‘see’ the rotation of the magnetic field and determine if the emission is in the form of a ‘fan’ or a ‘pencil’ beam1,8. Also, observation of the characteristic twisting of the polarization angle in other compact sources would reveal the presence of a black hole9,10,11,12. Here we report the development of an instrument that makes X-ray polarimetry possible. The factor of 100 improvement in sensitivity that we have achieved will allow direct exploration of the most dramatic objects of the X-ray sky.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic physics of the photoelectric effect in a gas.
Figure 2: The micro-pattern gas detector.
Figure 3: The polarization angle measurement.

Similar content being viewed by others

References

  1. Mészáros, P., Novick, R., Chanan, G. A., Weisskopf, M. C. & Szentgyörgyi, A. Astrophysical implication and observational prospects of X-ray polarimetry. Astrophys. J. 324, 1056–1067 (1988).

    Article  ADS  Google Scholar 

  2. Rees, M. J. Expected polarization properties of binary X-ray sources. Mon. Not. R. Astron. Soc. 171, 457–465 (1975).

    Article  ADS  Google Scholar 

  3. Sunyaev, R. A. & Titarchuk, L. G. Comptonization of low-frequency radiation in accretion disks: angular distribution and polarization of hard radiation. Astron. Astrophys. 143, 374–388 (1985).

    ADS  Google Scholar 

  4. Gnedin, Yu. N., Pavlov, G. G. & Shibanov, Yu. A. The effect of vacuum birefringence in a magnetic field on the polarization and beaming of X-ray pulsars. Sov. Astron. Lett. 4, 117–119 (1978).

    ADS  Google Scholar 

  5. Ventura, J. Scattering of light in strongly magnetized plasma. Phys. Rev. D 19, 1684–1695 (1979).

    Article  ADS  Google Scholar 

  6. Mészáros, P. & Ventura, J. Vacuum polarization effects on radiative opacities in strong magnetic field. Phys. Rev. D 19, 3565–3575 (1979).

    Article  ADS  Google Scholar 

  7. Cash, W., Shapley, A., Osterman, S. & Marshall, J. Laboratory detection of X-ray fringes with grazing-incidence interferometer. Nature 407, 160–162 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Gnedin, Yu. N. & Sunyaev, R. A. Polarization of optical and X-ray radiation from compact thermal sources with magnetic field. Astron. Astrophys. 36, 379–394 (1974).

    ADS  Google Scholar 

  9. Connors, P. A. & Stark, R. F. Observable gravitational effects on polarized radiation coming from near a black hole. Nature 269, 128–129 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Stark, R. F. & Connors, P. A. Observational test for the existence of a rotating black hole in Cyg X-1. Nature 266, 429–430 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Connors, P. A., Piran, T. & Stark, R. Polarization features of X-ray radiation emitted near a black hole. Astrophys. J. 235, 224–244 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Bao, G., Wiita, P. & Hadrava, P. Energy-dependent polarization variability as a black hole signature. Phys. Rev. Lett. 77, 12–15 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Celotti, A. & Matt, G. Polarization properties of synchrotron self-Compton emission. Mon. Not. R. Astron. Soc. 268, 451–458 (1994).

    Article  ADS  Google Scholar 

  14. Poutanen, J. Relativistic jets in blazars: polarization of radiation. Astrophys. J. Suppl. Ser. 92, 607–609 (1994).

    Article  ADS  Google Scholar 

  15. Tanaka, Y. et al. Gravitationally redshifted emission implying an accretion disk and massive black-hole in the active galaxy MCG-6-30-15. Nature 375, 659–661 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Ogura, J., Nobuyori, O. & Kojima, Y. Profiles and polarization properties of emission lines from relativistic disks. Publ. Astron. Soc. Jpn 52, 841–845 (2000).

    Article  ADS  Google Scholar 

  17. Matt, G., Fabian, A. C. & Ross, R. R. X-ray photoionized accretion discs: UV and X-ray continuum spectra and polarization. Mon. Not. R. Astron. Soc. 264, 839–852 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Novick, R., Weisskopf, M. C., Berthelsdorf, R., Linke, R. & Wolff, R. S. Detection of X-ray polarization of the Crab Nebula. Astrophys. J. 174, L1–L8 (1972).

    Article  ADS  Google Scholar 

  19. Weisskopf, M. C., Silver, E. H., Kestenbaum, H. L., Long, K. S. & Novick, R. A precision measurement of the X-ray polarization of the Crab Nebula without pulsar contamination. Astrophys. J. 220, L117–L122 (1978).

    Article  ADS  Google Scholar 

  20. Kaaret, P. et al. SXRP: a focal plane stellar X-ray polarimeter for the Spectrum-X-Gamma mission. Opt. Eng. 29, 773–783 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Schnopper, H. W. & Kalata, K. Polarimeter for celestial X-rays. Astron. J. 74, 854–858 (1969).

    Article  ADS  Google Scholar 

  22. Novick, R. in Planets, Stars and Nebulae Studied with Photopolarimetry (ed. Gerehls, T.) 262–317 (Univ. Arizona Press, Tucson, 1972).

    Google Scholar 

  23. Riegler, G. R., Garmire, G. P., Moore, W. E. & Stevens, J. A low-energy X-ray polarimeter. Bull. Am. Phys. Soc. 15, 635 (1970).

    Google Scholar 

  24. Tsunemi, H. et al. Detection of X-ray polarization with a charge coupled device. Nucl. Instrum. Methods A 321, 629–631 (1992).

    Article  ADS  Google Scholar 

  25. Buschhorn, G. et al. X-ray polarimetry using the photoeffect in a CCD detector. Nucl. Instrum. Methods A 346, 578–588 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Soffitta, P. et al. Astronomical X-ray polarimetry based on photoelectric effect with microgap detectors. Nucl. Instrum. Methods A (in the press); also preprint astro-ph/0012183 at 〈http://xxx.lanl.gov〉 (2000).

  27. Angelini, F. et al. The micro-gap chamber. Nucl. Instrum. Methods A 335, 69–77 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Austin, R. A., Minamitani, T. & Ramsey, B. Development of a hard X-ray imaging polarimeter. Proc. SPIE 2010, 118–125 (1993).

    Article  ADS  Google Scholar 

  29. La Monaca, A. et al. A new photoelectron imager for X-ray astronomical polarimetry. Nucl. Instrum. Methods A 416, 267–277 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Sauli, F. GEM: a new concept for electron amplification in gas detectors. Nucl. Instrum. Methods A 386, 531–534 (1997).

    Article  ADS  CAS  Google Scholar 

  31. Campbell, M. et al. A pixel readout chip for 10–30 Mrad in standard 0.25 µm CMOS. IEEE Trans. Nucl. Sci. 46, 156–160 (1999).

    Article  ADS  CAS  Google Scholar 

  32. Bavdaz, M. et al. Status of the X-ray evolving universe spectroscopy mission (XEUS). Proc. SPIE 4138, 69–78 (2000).

    Article  ADS  Google Scholar 

  33. Christensen, F. E. et al. X-ray calibration of the SODART flight telescope. Proc. SPIE 3113, 69–78 (1997).

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Italian Space Agency (ASI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, E., Soffitta, P., Bellazzini, R. et al. An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars. Nature 411, 662–665 (2001). https://doi.org/10.1038/35079508

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35079508

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing