Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Type II myosin regulatory light chain relieves auto-inhibition of myosin-heavy-chain function

Abstract

The F-actin based motor protein myosin II has a key role in cytokinesis. Here we show that the Schizosaccharomyces pombe regulatory light chain (RLC) protein Rlc1p binds to Myo2p in manner that is dependent on the IQ sequence motif (the RLC-binding site), and that Rlc1p is a component of the actomyosin ring. Rlc1p is important for cytokinesis at all growth temperatures and is essential for this process at lower temperatures. Interestingly, all deleterious phenotypes associated with the loss of Rlc1p function are suppressed by deletion of the RLC binding site on Myo2p. We conclude that the sole essential function of RLCs in fission yeast is to relieve the auto-inhibition of myosin II function, which is mediated by the RLC-binding site, on the myosin heavy chain (MHC).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rlc1p is a regulatory light chain that associates with Myo2p.
Figure 2: Rcl1p localization and dependencies.
Figure 3: Suppression of rlc1Δ by deletion of the Rlc1p-binding site on Myo2p.

Similar content being viewed by others

References

  1. Satterwhite, L. L. & Pollard, T. D. Curr. Opin. Cell Biol. 4, 43–52 (1992).

    Article  CAS  Google Scholar 

  2. Harrington, W. F. & Rodgers, M. E. Annu. Rev. Biochem. 53, 35–73 (1984).

    Article  CAS  Google Scholar 

  3. Karess, R. E. et al. Cell 65, 1177–1189 (1991).

    Article  CAS  Google Scholar 

  4. Chen, P., Ostrow, B. D., Tafuri, S. R. & Chisholm, R. L. J. Cell Biol. 127, 1933–1944 (1994).

    Article  CAS  Google Scholar 

  5. Uyeda, T. Q. & Spudich, J. A. Science 262, 1867–1870 (1993).

    Article  CAS  Google Scholar 

  6. Kitayama, C., Sugimoto, A. & Yamamoto, M. J. Cell Biol. 137, 1309–1319 (1997).

    Article  CAS  Google Scholar 

  7. May, K. M., Win, T. Z. & Hyams, J. S. Cell. Motil. Cytoskeleton 38, 385–396 (1997).

    Article  CAS  Google Scholar 

  8. Bezanilla, M., Forsburg, S. L. & Pollard, T. D. Mol. Biol. Cell 8, 2693–2705 (1997).

    Article  CAS  Google Scholar 

  9. Motegi, F., Nakano, K., Kitayama, C., Yamamoto, M. & Mabuchi, I. FEBS Lett. 420, 161–166 (1997).

    Article  CAS  Google Scholar 

  10. Balasubramanian, M. K. et al. Genetics 149, 1265–1275 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mulvihill, D. P., Win, T. Z., Pack, T. P. & Hyams, J. S. Microsc. Res. Tech. 49, 152–160 (2000).

    Article  CAS  Google Scholar 

  12. McCollum, D. et al. J. Cell Biol. 130, 651–660 (1995).

    Article  CAS  Google Scholar 

  13. Naqvi, N., Eng, K., Gould, K. L. & Balasubramanian, M. K. EMBO J. 18, 854–862 (1999).

    Article  CAS  Google Scholar 

  14. Motegi, F., Nakano, K. & Mabuchi, I. J. Cell Sci. 113, 1813–1825 (2000).

    CAS  PubMed  Google Scholar 

  15. Bezanilla, M., Wilson, J. M. & Pollard, T. D. Curr. Biol. 10, 397–400 (2000).

    Article  CAS  Google Scholar 

  16. De Lozanne, A. & Spudich, J. A. Science 236, 1086–1091 (1987).

    Article  CAS  Google Scholar 

  17. Knecht, D. A. & Loomis, W. F. Science. 236, 1081–1085 (1987).

    Article  CAS  Google Scholar 

  18. Neujahr, R., Heizer, C. & Gerisch, G. J. Cell Sci. 110, 123–137 (1997).

    CAS  PubMed  Google Scholar 

  19. Rayment, I. et al. Science 261, 50–58 (1993).

    Article  CAS  Google Scholar 

  20. Smith, D. B. & Johnson, K. S. Gene 67, 31–40 (1988).

    Article  CAS  Google Scholar 

  21. Keeney, J. B. & Boeke, J. D. Genetics 136, 849–856 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Balasubramanian, M. K., McCollum, D. & Gould, K. L. Methods Enzymol. 283, 494–506 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Pollard for the myp2-null strain, and P. Silver and K. Sawin for anti-GFP antibodies. We also thank A. Munn, S. Oliferenko, K. Sampath and all members of the IMA yeast laboratories (especially S. Naqvi and V. Rajagopalan) for discussion and critical reading of the manuscript. Rlc1p was independently isolated by V. Simanis and colleagues, whom we thank for sharing unpublished information. This work was supported by research funds from the National Science and Technology Board, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan K. Balasubramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naqvi, N., Wong, K., Tang, X. et al. Type II myosin regulatory light chain relieves auto-inhibition of myosin-heavy-chain function. Nat Cell Biol 2, 855–858 (2000). https://doi.org/10.1038/35041107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing