Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing

Abstract

Nicastrin, a transmembrane glycoprotein, forms high molecular weight complexes with presenilin 1 and presenilin 2. Suppression of nicastrin expression in Caenorhabditis elegans embryos induces a subset of notch/glp-1 phenotypes similar to those induced by simultaneous null mutations in both presenilin homologues of C. elegans (sel-12 and hop-1). Nicastrin also binds carboxy-terminal derivatives of β-amyloid precursor protein (βAPP), and modulates the production of the amyloid β-peptide (Aβ) from these derivatives. Missense mutations in a conserved hydrophilic domain of nicastrin increase Aβ42 and Aβ40 peptide secretion. Deletions in this domain inhibit Aβ production. Nicastrin and presenilins are therefore likely to be functional components of a multimeric complex necessary for the intramembranous proteolysis of proteins such as Notch/GLP-1 and βAPP.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Predicted amino-acid sequence and topology of nicastrin.
Figure 2: Characterization of nicastrin (NCT) using V5-tagged nicastrin.
Figure 3: PS1 and PS2 form complexes with nicastrin.
Figure 4: Effect of nicastrin on Notch signalling.
Figure 5: α-secretase and β-secretase cleavage fragments of βAPP (C83-βAPP and C99-βAPP respectively) co-precipitate with nicastrin.
Figure 6: Scatter plots of secreted Aβ40, Aβ42 and Aβ42/Aβ40 ratios showing increased Aβ secretion from HEK293 cells expressing DYIGS→AAIGS mutant nicastrin, and decreased Aβ secretion from cells expressing Δ312–369 or Δ312–340 mutants.
Figure 7: Functional nicastrin mutants do not significantly impair the nicastrin interaction with C99-βAPP/C83-βAPP in HEK293 cells expressing βAPPSwedish.

References

  1. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Rogaev, E. I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a novel gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Yu, G. et al. The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains β-catenin. J. Biol. Chem. 273, 16470–16475 ( 1998).

    Article  CAS  Google Scholar 

  4. Nishimura, M. et al. Presenilin mutations dominantly modulate β-catenin trafficking. Nature Med. 5, 164–169 (1999).

    Article  CAS  Google Scholar 

  5. De Strooper, B. et al. Post-translational modification, subcellular localization and membrane orientation of the Alzheimer's Disease associated Presenilins. J. Biol. Chem 272, 3590– 3598 (1997).

    Article  CAS  Google Scholar 

  6. De Strooper, B. et al. Deficiency of presenilin 1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387 –390 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Ye, Y., Lukinova, N. & Fortini, M. E. Neurogenic phenotypes and altered Notch processing in Drosophila presenilin mutants. Nature 398 , 525–529 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525 (1999).

    Article  ADS  CAS  Google Scholar 

  9. De Strooper, B. et al. A presenilin dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Song, W. et al. Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc. Natl Acad. Sci. USA 96, 6959– 6963 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Katayama, T. et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nature Cell Biol. 1, 479–485 (1999).

    Article  CAS  Google Scholar 

  12. Niwa, M., Sidrauski, C., Kaufman, R. J. & Walter, P. A role for presenilin-1 in nuclear accumulation of Ire1 fragments amd induction of the mammalian Unfolded Protein Response. Cell 99 , 691–702 (1999).

    Article  CAS  Google Scholar 

  13. Scheuner, D. et al. Secreted amyloid-β protein similar to that in the senile plaques of Alzheimer Disease is increased in vivo by presenilin 1 and 2 and APP mutations linked to FAD. Nature Med. 2, 864–870 (1996).

    Article  CAS  Google Scholar 

  14. Citron, M. et al. Mutant presenilins of Alzheimer's Disease increase production of 42 residue amyloid β-protein in both transfected cells and transgenic mice. Nature Med. 3, 67– 72 (1997).

    Article  CAS  Google Scholar 

  15. Wolfe, M. S. et al. Two transmembrane aspartates in presenilin 1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398, 513–517 ( 1999).

    Article  ADS  CAS  Google Scholar 

  16. Li, Y. M. et al. Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689–694 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Thinakaran, G. et al. Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J. Biol. Chem. 272, 28415–28422 ( 1997).

    Article  CAS  Google Scholar 

  18. Li, Y.-M. et al. Presenilin 1 is linked with gamma-secretase activity in the detergent solubilized state. Proc. Natl Acad. Sci. USA 97, 6138–6143 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Yu, G. Mutation of conserved aspartates affect maturation of both aspartate-mutant and endogenous presenilin 1 and presenilin 2 Complexes. J. Biol. Chem. (in the press).

  20. Feldman, R. G., Chandler, K. A., Levy, L. L. & Glaser, G. H. Familial Alzheimer's Disease. Neurology 13, 811–824 (1963).

    Article  CAS  Google Scholar 

  21. Foncin, J.-F. et al. Démence présénile d’Alzheimer transmise dans une famille étendue. Rev. Neurol. (Paris) 141, 194–202 (1985).

    CAS  Google Scholar 

  22. Figeys, D., Ducret, A., Yates, J. R. & Aebersold, R. Protein identification by solid phase micro-extraction-capillary zone electrophoresis-microelectrospray-tandem mass spectroscopy. Nature Biotech. 14, 1579 –1583 (1996).

    Article  CAS  Google Scholar 

  23. Zhou, J. et al. Presenilin 1 interacts with a novel member of the armadillo family. NeuroReport 8, 2085–2090 (1997).

    Article  CAS  Google Scholar 

  24. Levesque, G. et al. Presenilins interact with armadillo proteins including neural specific plakophilin related protein and beta-catenin. J. Neurochem. 72, 999–1008 ( 1999).

    Article  CAS  Google Scholar 

  25. Kehoe, P. et al. A full genome scan for late onset Alzheimer's Disease. Hum. Mol. Genet. 8, 237–245 (1999).

    Article  CAS  Google Scholar 

  26. Zubenko, G. S., Hughes, H. B., Stiffler, J. S., Hurtt, M. R. & Kaplan, B. B. A genome survey for novel Alzheimer disease risk loci: results at 10 cM resolution. Genomics 50, 121–128 (1998).

    Article  CAS  Google Scholar 

  27. Preiss, J. R., Schnabel, H. & Schnabel, R. The glp-1 locus and cellular interactions in early C. elegans embryos. Cell 51, 601– 611 (1987).

    Article  Google Scholar 

  28. Li, X. & Greenwald, I. HOP-1, A Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL12 presenilin and to facilitate LIN-12 and GLP-1 signalling. Proc. Natl Acad. Sci. USA 94, 12204–12209 (1998).

    Article  ADS  Google Scholar 

  29. Westlund, B., Barry, D., Clover, R., Basson, M. & Johnson, C. D. Reverse genetic analysis of C. elegans presenilins reveals redundant but unequal roles for sel-12 and hop-1 in Notch-pathway signaling. Proc. Natl Acad. Sci. USA 96, 2497–2502 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Goutte, C., Hepler, W., Mickey, K. M. & Priess, J. R. aph-2 encodes a novel extracellular protein required for GLP-1-mediated signaling. Development 127, 2481– 2492 (2000).

    CAS  Google Scholar 

  31. Hussain, I. et al. Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol. Cell Neurosci. 14, 419– 427 (1999).

    Article  CAS  Google Scholar 

  32. Sinha, S. et al. Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402, 537– 540 (1999).

    Article  ADS  CAS  Google Scholar 

  33. Vassar, R. et al. Beta-secretase cleavage of Alzheimer's Amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

    Article  CAS  Google Scholar 

  34. Yan, R. et al. Membrane-anchored aspartyl protease with Alzheimer's Disease beta-secretase activity. Nature 402, 533– 537 (1999).

    Article  ADS  CAS  Google Scholar 

  35. Selkoe, D. J. Normal and abnormal biology of β-Amyloid Precursor Protein. Ann. Rev. Neurosci. 17, 489–517 (1994).

    Article  CAS  Google Scholar 

  36. Xia, W., Zhang, J., Perez, R., Koo, E. H. & Selkoe, D. J. Interaction between amyloid precursor protein and presenilins in mammalian cells: implications for the pathogenesis of Alzheimer Disease. Proc. Natl Acad. Sci. USA 94, 8208 –8213 (1997).

    Article  ADS  CAS  Google Scholar 

  37. Ray, W. J. et al. Evidence for a physical interaction between presenilin and Notch. Proc. Natl Acad. Sci. USA 96, 3263 –3268 (1999).

    Article  ADS  CAS  Google Scholar 

  38. Thinakaran, G. et al. Stable association of the presenilin derivatives and absence of presenilin interactions with APP. Neurobiol. Disease 4, 438–453 (1998).

    Article  CAS  Google Scholar 

  39. Capell, A. et al. The proteolytic fragments of the Alzheimer's Disease associated presenilin-1 form heterodimers and occur as a 100–150 kDa molecular mass complex. J. Biol. Chem. 273, 3205– 3211 (1998).

    Article  CAS  Google Scholar 

  40. Hay, J. C., Chao, D. S., Kuo, C. S. & Scheller, R. H. Protein interaction regulating vesicle transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells. Cell 89, 149– 158 (1997).

    Article  CAS  Google Scholar 

  41. Citron, M. et al. Additive effects of PS1 and APP mutations on secretion of the 42-residue amyloid beta-protein. Neurobiol. Dis. 5, 107–116 (1998).

    Article  CAS  Google Scholar 

  42. Chen, F. Proteolytic derivative of Amyloid Precursor Protein accumulate in restricted and unpredicted intracellular compartments in the absence of functional presenilin 1 expression. J. Biol. Chem. (in the press).

  43. Zhang, L., Song, L. & Parker, E. M. Calpain inhibitor 1 increases beta-Amyloid peptide production by inhibiting the degradation of the substrate of gamma-secretase. J. Biol. Chem. 274, 8966–8972 (1999).

    Article  CAS  Google Scholar 

  44. Howell, D. C. Statistical Methods for Psychology (Duxbury Press, California, 1992).

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Medical Research Council of Canada, Alzheimer Association of Ontario, Howard Hughes Medical Research Foundation, Scottish Rite Charitable Foundation, Helen B. Hunter Fellowship (G.Y.), Peterborough Burgess Fellowship (E.A.R.), NIH (R.A. and L.F.); the National Institute of Aging Alzheimer Disease Center Grant (L.F.), University of Toronto Department of Medicine Postgraduate Fellowship (M.N.) and Japan Society for the Promotion of Science (T.K.). The PS2 D366A construct was from C. Haass. We thank R. Feldman and J.-F. Foncin for their work on the Nicastro pedigrees, and C. Goutte and J. R. Preiss for sharing pre-publication data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter St George-Hyslop.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, G., Nishimura, M., Arawaka, S. et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature 407, 48–54 (2000). https://doi.org/10.1038/35024009

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35024009

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing