Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alternative dielectrics to silicon dioxide for memory and logic devices

The silicon-based microelectronics industry is rapidly approaching a point where device fabrication can no longer be simply scaled to progressively smaller sizes. Technological decisions must now be made that will substantially alter the directions along which silicon devices continue to develop. One such challenge is the need for higher permittivity dielectrics to replace silicon dioxide, the properties of which have hitherto been instrumental to the industry's success. Considerable efforts have already been made to develop replacement dielectrics for dynamic random-access memories. These developments serve to illustrate the magnitude of the now urgent problem of identifying alternatives to silicon dioxide for the gate dielectric in logic devices, such as the ubiquitous field-effect transistor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic showing the continual increase in device density as the minimum feature size of the lithography is reduced.
Figure 2: Plots of the current densities flowing between gate contact and channel through a SiO2 dielectric, for various thicknesses of SiO2 dielectric, as a function of applied voltage.
Figure 3: Schematic showing two types of DRAM architecture, adapted from ref. 11.
Figure 4: Plots of permittivity of (Ba0.7Sr0.3)TiO3 (BST) produced by metalorganic chemical vapour deposition (MOCVD) as a function of the (Ba+Sr)/Ti stoichiometry.
Figure 5: Schematic cross-section of a field effect transistor (FET) drawn to scale3.
Figure 6: The compositional dependence of the crystallization temperature of a, La2O3–SiO2 alloy thin films, and b, HfO2–SiO2 alloy thin films.

References

  1. Moore, G. E. Progress in digital integrated electronics. IEEE IEDM Tech. Dig. 11–13 (1975).

  2. Moore G. E. Cramming more components onto integrated circuits. Electronics 38, 114–117 ( 1965).

    Google Scholar 

  3. Semiconductor Industry Association. International Technology Roadmap for Semiconductors 1999 edn 〈http://www.itrs.net/ntrs/publntrs.nsf 〉.

  4. Lo, S.-H, Buchanan, D. A., Taur, Y. & Wang, W. Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFETs. IEEE Electron Device Lett. 18, 209–211 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Summerfelt, S. R. in Thin Film Ferroelectric Materials and Devices (ed. Ramesh, R.) 1–42 (Kluwer, Boston, MA, 1997).

    Book  Google Scholar 

  6. Kotecki, D. E. A review of high dielectric materials for DRAM applications. Integr. Ferroelec. 16, 1–19 ( 1997).

    Article  CAS  Google Scholar 

  7. Kotecki, D. E. et al. (Ba,Sr)TiO3 dielectrics for future stacked-capacitor DRAM. IBM J. Res. Develop. 43, 339– 350 (1999).

    Article  Google Scholar 

  8. Fazan, P. C. et al. Ultrathin oxide nitride dielectrics for rugged stacked DRAM capacitors. IEEE Electron Device Lett. 13, 86–88 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Hilton, A. D. & Ricketts, B. W. Dielectric properties of Ba xSrxTiO3 ceramics. J. Phys. D 29, 1321–1325 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Matsubara, S., Sakuma, T., Yamamichi, S., Yamaguchi, H. & Miyasaka, Y. in Ferroelectric Thin Films (eds Kingon, A. I. and Myers, E. R.) (MRS Symp. Proc. 200) 243 –253 (Materials Research Society, Pittsburgh, PA, 1990).

    Google Scholar 

  11. Fazan, P. Trends in the development of ULSI DRAM capacitors. Integr. Ferroelec. 4, 247–256 ( 1994).

    Article  CAS  Google Scholar 

  12. Basceri, C., Streiffer, S. K., Kingon, A. I. & Waser, R. The dielectric response of fiber-textured (Ba, Sr)TiO3 thin films grown by chemical vapor deposition. J. Appl. Phys. 82, 2497–2504 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Streiffer, S. K., Basceri, C., Parker, C. B., Lash, S. E. & Kingon, A. I. Ferroelectricity in thin films: the dielectric response of fiber-textured (BaxSr1-x)Ti 1+yO3+z thin films grown by chemical vapor deposition. J. Appl. Phys. 86, 4565–4575 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Kingon, A. I., Streiffer, S. K., Basceri, C. & Summerfelt, S. R. Application of high-permittivity perovskite thin films to dynamic random access memories. Mater. Res. Bull. 21, 46– 52 (1996).

    Article  CAS  Google Scholar 

  15. Baniecki, J. D. et al. Dielectric relaxation of Ba0. 7Sr0. 3TiO 3 thin films from 1 mHz to 20 GHz. Appl. Phys. Lett. 72, 498–500 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Horikawa, T., Makita, T. & Mikami, N. Dielectric relaxation of (Ba,Sr)TiO3 thin films. Jpn. J. Appl. Phys. 34, 5478–5482 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Lash, S. E. Growth and properties of MOCVD (Ba, Sr)TiO3 thin film capacitors. Thesis, North Carolina State Univ. (1999).

    Google Scholar 

  18. Bilodeau, S. M., Carl, R., Van Buskirk, P. & Ward, J. MOCVD of (Ba,Sr)TiO3 for 1-Gbit DRAMs. Solid State Technol. 40, 235–242 ( 1997).

    CAS  Google Scholar 

  19. Buskirk, P. C. V. et al. Common and unique aspects of perovskite thin film CVD processes. Integr. Ferroelec. 21, 273– 289 (1998).

    Article  Google Scholar 

  20. Basceri, C. Electrical and dielectric properties of (Ba,Sr)TiO3 thin film capacitors for ultra-high density dynamic random access memories. Thesis, North Carolina State Univ. (1997).

    Google Scholar 

  21. Grossmann, M. et al. Resistance degradation behavior of Ba0. 7Sr 0. 3TiO3 thin films compared to mechanisms found in titanate ceramics and single crystals. Integr. Ferroelec. 22 , 603–614 (1998).

    Google Scholar 

  22. Wu, E. Y., Stathis, J. H. & Han, L.-K Ultrathin oxide reliability for ULSI applications . Semiconductor Sci. Technol. 15, 425– 435 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Muller, D. A. et al. The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758– 762 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Hirose, M. et al. Fundamental limit of gate oxide thickness scaling in advanced MOSFETs. Semiconductor Sci. Technol. 15, 485–490 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Luan, H. F. et al. High quality Ta2O5 gate dielectrics with Tox. eq>10. IEDM Tech. Digest Int. 141–144 (1999).

  26. Alers, G. B. et al. Intermixing at the tantalum oxide/silicon interface in gate dielectric structures. Appl. Phys. Lett. 73, 1517–1519 (1998)

    Article  ADS  CAS  Google Scholar 

  27. Campbell, S. A. et al. MOSFET transistors fabricated with high permittivity TiO 2 dielectrics. IEEE Trans. Electron Devices 44 , 104–109 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Wilk, G. D., Wallace, R. M. & Anthony, J. M. Hafnium and zirconium silicates for advanced gate dielectrics. J. Appl. Phys. 87, 484– 492 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Wilk, G. D. & Wallace, R. M. Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon. Appl. Phys. Lett. 74, 2854–2856 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Cheng, Y. C. & Sullivan, E. A. Scattering of charge carriers in silicon. J. Appl. Phys. 44, 923– 925 (1973).

    Article  ADS  CAS  Google Scholar 

  31. Eisenbeiser, K. et al. Field effect transistors with SrTiO3 gate dielectric on Si. Appl. Phys. Lett. 76, 1324– 1326 (2000).

    Article  ADS  CAS  Google Scholar 

  32. Hubbard, K. J. & Schlom, D. G. Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 11, 2757–2776 ( 1996).

    Article  ADS  CAS  Google Scholar 

  33. Copel, M., Gribelyuk, M. & Gusev, E. Structure and stability of ultrathin zirconium oxide layers on Si(001). Appl. Phys. Lett. 76, 436–438 (2000).

    Article  ADS  CAS  Google Scholar 

  34. Gusev, E. P. et al. High-resolution depth profiling in ultrathin AlO3 films on Si. Appl. Phys. Lett. 76, 176– 178 (2000).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  35. Shannon, R. D. Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993).

    Article  ADS  CAS  Google Scholar 

  36. Schlom, D. G. High-K candidates for use as the gate dielectric in silicon MOSFETs. Appl. Phys. A (in the press).

  37. Hergenrother, J. M. et al. The vertical replacement-gate (VRG) MOSFET: a 50-nm vertical MOSFET with lithographically-independent gate length. IEDM Tech. Digest 75–78 (1999).

Download references

Acknowledgements

Research by the authors on the topic of dielectrics for DRAMs and gate dielectrics is funded by SRC and Sematech. Research results contributed by students D. Wicaksana and J. Parrette are gratefully acknowledged. Some data presented are from research undertaken by the US Ultradense Capacitor Materials Processing Partnership. Thanks to C. Parker and C. Osburn for assistance with the figures, and to R. Amos (IBM) for a critical reading of the manuscript. S.K.S. acknowledges support by the US Department of Energy, Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus I. Kingon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kingon, A., Maria, JP. & Streiffer, S. Alternative dielectrics to silicon dioxide for memory and logic devices . Nature 406, 1032–1038 (2000). https://doi.org/10.1038/35023243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023243

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing