Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Encoding of movement time by populations of cerebellar Purkinje cells

Abstract

One of the earliest computational principles attributed to the cerebellum was the measurement of time1. This idea was originally suggested on anatomical grounds, and was taken up again to explain some of the deficits in cerebellar patients2,3. The contribution of the cerebellum to eye movements, in contrast, has traditionally been discussed in the context of motor learning4,5,6,7. This view has received support from the loss of saccade adaptation, one of the key examples of motor learning, following lesions of the posterior cerebellar vermis8,9,10,11. However, the relationship between the properties of saccade-related vermal Purkinje cells and the behavioural deficits that follow lesions is unclear. Here we report results from single-unit recording experiments on monkeys that reconcile the seemingly unrelated concepts of timing and motor learning. We report that, unlike individual Purkinje cells, the population response of larger groups of Purkinje cells gives a precise temporal signature of saccade onset and offset. Thus a vermal population response may help to determine saccade duration. Modifying the time course of the population response by changing the weights of the contributing individual Purkinje cells, discharging at different times relative to the saccade, would directly translate into changes in saccade amplitude.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Perisaccadic time histograms and raster plots obtained from vermal PCs, reflecting the highly variable dependence of saccade-related bursts on saccade amplitude.
Figure 2: Dependence of saccade duration on saccade length (a) and burst parameters on saccade durations (b–f).
Figure 3: Dependence of the population burst on saccade duration.
Figure 4: Scatter-plot of p, the probability of the linear regression, fitting plots of saccade end as function of burst end, as a function of its slope m.

Similar content being viewed by others

References

  1. Braitenberg,V. Functional interpretation of cerebellar histology. Nature 190, 539–640 (1961).

    Article  ADS  Google Scholar 

  2. Ivry,R. B. & Diener,H. C. Impaired velocity perception in patients with lesions of the cerebellum. J. Cogn. Neurosci. 3, 355–366 ( 1991).

    Article  CAS  Google Scholar 

  3. Ivry,R. B. & Keele,S. W. Timing functions of the cerebellum. J. Cogn. Neurosci. 1, 136– 152 (1993).

    Article  Google Scholar 

  4. Marr,D. A theory of cerebellar cortex. J. Physiol. 202, 437 –470 (1969).

    Article  CAS  Google Scholar 

  5. Ito,M. Cerebellar control of the vestibulo-ocular reflex- around the flocculus hypothesis. Annu. Rev. Neurosci. 5, 275–296 (1982).

    Article  CAS  Google Scholar 

  6. Kawato,M. & Gomi,H. The cerebellum and VOR/OKR learning models. Trends Neurosci. 15, 445– 453 (1992).

    Article  CAS  Google Scholar 

  7. Raymond,J. L., Lisberger,S. G. & Mauk, M. D. The cerebellum: A neuronal learning machine? Science 272, 1126–1131 ( 1996).

    Article  ADS  CAS  Google Scholar 

  8. Optican,L. M. & Robinson,D. A. Cerebellar-dependent adaptive control of primate saccadic system. J. Neurophysiol. 44, 1058–1076 (1980).

    Article  CAS  Google Scholar 

  9. Takagi,M., Zee,D. S. & Tamargo,R. J. Effects of lesions of the oculomotor vermis on eye movement in primate: saccades. J. Neurophysiol. 80, 1911–1931 (1998).

    Article  CAS  Google Scholar 

  10. Barash,S. et al. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J. Neurosci. 19, 10931– 10939 (1999).

    Article  CAS  Google Scholar 

  11. Fitzgibbon,E. J. & Goldberg,R. A. in Adaptive Processes in Visual and Oculomotor Systems (eds Keller, B. L. & Zee, D. S.) 329–333 (Pergamon, Oxford, 1986).

    Google Scholar 

  12. Llinás,R. & Wolfe,J. W. Functional linkage between the electrical activity in the vermal cerebellar cortex and saccadic eye movements. Exp. Brain Res. 29, 1– 14 (1977).

    Article  Google Scholar 

  13. Kase,M., Miller,D. C. & Noda,H. Discharges of Purkinje cells and mossy fibers in the cerebellar vermis of the monkey during saccadic eye movements and fixation. J. Physiol. (Lond.) 300, 539–555 (1980).

    Article  CAS  Google Scholar 

  14. Sato,H. & Noda,H. Posterior vermal Purkinje cells in macaques responding during saccades, smooth pursuit, chair rotation and/or optokinetic stimulation. Neurosci. Res. 12, 583– 595 (1992).

    Article  CAS  Google Scholar 

  15. Helmchen,C. & Büttner,U. Saccade-related Purkinje cell activity in the oculomotor vermis during spontaneous eye movements in light and darkness. Exp. Brain Res. 103, 198– 208 (1995).

    Article  CAS  Google Scholar 

  16. Bahill,A. T., Clark,S. A. & Stark,R. J. The main sequence, a tool for studying human eye movements. Math. Biosci. 24, 287– 298 (1975).

    Article  Google Scholar 

  17. Desmurget,M. et al. Functional anatomy of saccadic adaptation in humans. Nature Neurosci. 1, 524–528 (1998).

    Article  CAS  Google Scholar 

  18. Ohtsuka,K. & Noda,H. Saccadic burst neurons in the oculomotor region of the fastigial nucleus of macaque monkey. J. Neurophysiol. 65, 1422–1434 ( 1991).

    Article  CAS  Google Scholar 

  19. Fuchs,A. F., Robinson,F. R. & Straube, A. Role of caudal fastigial nucleus in saccade generation. I. Neuronal discharge patterns. J. Neurophysiol. 70 , 1723–1740 (1993).

    Article  CAS  Google Scholar 

  20. Noda,H., Sugita,S. & Ikeda,Y. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J. Comp. Neurol. 302 , 330–348 (1990).

    Article  CAS  Google Scholar 

  21. Scudder,C. A. Discharge of fastigial nucleus neurons is altered during adaptive modification of saccade size. Soc. Neurosci. Abstr. 24, 147 (1998).

    Google Scholar 

  22. Llinás,R. & Mühlethaler,M. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem–cerebellar preparation. J. Physiol. (Lond.) 404, 241 –258 (1988).

    Article  Google Scholar 

  23. Aizenmann,C. D. & Linden,D. J. Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J. Neurophysiol. 82, 1697–1709 (1999).

    Article  Google Scholar 

  24. Judge,S. J., Richmond,B. J. & Chu, F. C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20 , 535–538 (1980).

    Article  CAS  Google Scholar 

  25. Thier,P. & Erickson,R. G. Responses of visual-tracking neurons from cortical area MSTl to visual, eye and head motion. Eur. J. Neurosci. 4, 539–553 (1992).

    Article  Google Scholar 

  26. Thielert,C.-D. Elektrophysiologische und Anatomische Untersuchungen zum Okulomotorischen Beitrag des Posterioren Vermis des Rhesusaffen. Thesis, Eberhard-Karls-Universität Tübingen (1996).

    Google Scholar 

  27. Haas,R., Dicke,P. W. & Thier,P. Saccade-related responses of most posterior vermal Purkinje cells do not depend on the starting position of the eyes. Soc. Neurosci. Abstr. 25, 1652 (1999 ).

    Google Scholar 

  28. Hanes,D. P., Thompson,K. G. & Schall, J. D. Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis. Exp. Brain Res. 103, 85–96 (1995).

    Article  CAS  Google Scholar 

  29. Press,H. W., Teukolsky,S. A., Vetterling, W. T. & Flannery,B. P. (eds) Numerical Recipes in C, 650–655 (Cambridge Univ. Press, Cambridge, 1992).

    MATH  Google Scholar 

Download references

Acknowledgements

This work was funded by the German-Israeli-Foundation and the German Research Council (Forschergruppe ‘Wahrnehmen und Agieren im Raum’). We thank M. Erb and W. Grodd for their help with the anatomic MRI scans and C. Schwarz and F. Sultan for helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Thier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thier, P., Dicke, P., Haas, R. et al. Encoding of movement time by populations of cerebellar Purkinje cells . Nature 405, 72–76 (2000). https://doi.org/10.1038/35011062

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35011062

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing