Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chaotic, subduction-like downflows in a spherical model of convection in the Earth's mantle

Abstract

NUMERICAL models of three-dimensional, nonlinear, thermal convection of very viscous fluids have recently been developed in rectangular1–4 and spherical5–12 geometries as analogues of convection in the Earth's mantle. Here we describe model calculations for a compressible fluid in a three-dimensional spherical shell with 80% of the surface heat flow generated within the model mantle, in agreement with estimates for the Earth's mantle13. The Rayleigh number and the numerical resolution for these calculations are greater than those of our previous studies9,10 of internally heated convection in a spherical shell. Our numerical solutions are strongly chaotic, with surface planforms dominated by long curvilinear downflows reminiscent of the descending slabs in the Earth's mantle. Although analogy to the Earth's mantle is necessarily imperfect, owing to, for example, the absence of variable viscosity and rheology—and hence of lithospheric plates—our results suggest that descending slabs play an important part in driving mantle convection, and that their chaotic evolution may influence the spatial and temporal behaviour of plates and thus the dispersal and aggregation of continents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cserepes, L., Rabinowics, M. & Romberg-Borot, C. J. geophys. Res. 93, 12009–12025 (1988).

    Article  ADS  Google Scholar 

  2. Houseman, G. Nature 332, 346–349 (1988).

    Article  ADS  Google Scholar 

  3. Travis, B., Olson, P. & Schubert, G. J. Fluid Mech. 216, 71–91 (1990).

    Article  ADS  Google Scholar 

  4. Travis, B., Weinstein, S. & Olson, P. Geophys. Res. Lett. 17, 243–246 (1990).

    Article  ADS  Google Scholar 

  5. Baumgardner, J. R. J. statist Phys. 39, 501–511 (1985).

    Article  ADS  Google Scholar 

  6. Machetel, P., Rabinowicz, M. & Bernardet, P. Geophys. astrophys. Fluid Dyn. 37, 57–84 (1986).

    Article  ADS  Google Scholar 

  7. Glatzmaier, G. A. Geophys. astrophys. Fluid Dyn. 43, 223–264 (1988).

    Article  ADS  Google Scholar 

  8. Baumgardner, J. R. in Physics of the Planets (ed. Runcorn, S. K.) 199–231 (Wiley, New York, 1988).

    Google Scholar 

  9. Bercovici, D., Schubert, G. & Glatzmaier, G. A. Science 244, 950–955 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Bercovici, D., Schubert, G. & Glatzmaier, G. A. Geophys. Res. Lett. 16, 617–620 (1989).

    Article  ADS  Google Scholar 

  11. Bercovici, D., Schubert, G., Glatzmaier, G. A. & Zebib, A. J. Fluid Mech. 206, 75–104 (1989).

    Article  ADS  Google Scholar 

  12. Schubert, G., Bercovici, D. & Glatzmaier, G. A. J. geophys, Res. (in the press).

  13. Turcotte, D. L. & Schubert, G. Geodynamics (Wiley, New York, 1982).

  14. Grassberger, P. & Procaccia, I. Phys. Rev. Lett. 50, 346–349 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  15. Kostelich, E. J. & Swinney, H. L. Physica Scripta 40, 436–441 (1989).

    Article  ADS  Google Scholar 

  16. Machetel, P. & Yuen, D. A. Earth planet Sci. Lett. 86, 93–104 (1987).

    Article  ADS  Google Scholar 

  17. Vincent, A. P. & Yuen, D. A. Phys. Rev. A38, 328–334 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Stewart, C. A. & Turcotte, D. L. J. geophys. Res. 94, 13707–13717 (1989).

    Article  ADS  Google Scholar 

  19. Whitehead, J. A. & Parsons, B. Geophys. astrophys. Fluid Dyn. 9, 201–217 (1978).

    Article  ADS  Google Scholar 

  20. Busse, F. H. J. Fluid Mech. 72, 67–85 (1975).

    Article  ADS  Google Scholar 

  21. Schubert, G. in Mechanisms of Continental Drift and Plate Tectonics (eds Davies, P. A. & Runcorn, S. K.) 151–158 (Academic, London, 1980).

    Google Scholar 

  22. Carrigan, C. R. Geophys. astrophys. Fluid Dyn. 32, 1–21 (1985).

    Article  ADS  Google Scholar 

  23. Weinstein, S. A. & Olson, P. Geophys. Res. Lett. 17, 239–242 (1990).

    Article  ADS  Google Scholar 

  24. Garfunkel, Z. & Schubert, G. J. geophys. Res. 91, 7205–7223 (1986).

    Article  ADS  Google Scholar 

  25. Lachenbruch, A. H. J. geophys. Res. 81, 1883–1902 (1976).

    Article  ADS  Google Scholar 

  26. Olson, P., Schubert, G., Anderson, C. & Goldman, P. J. J. geophys. Res. 93, 15065–15084 (1988).

    Article  ADS  Google Scholar 

  27. Schubert, G., Olson, P., Anderson, C. & Goldman, P. J. geophys. Res. 94, 9523–9532 (1989).

    Article  ADS  Google Scholar 

  28. Weinstein, S. A. & Olson, P. Geophys Res. Lett. 16, 433–436 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glatzmaier, G., Schubert, G. & Bercovici, D. Chaotic, subduction-like downflows in a spherical model of convection in the Earth's mantle. Nature 347, 274–277 (1990). https://doi.org/10.1038/347274a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347274a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing