Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dependence of the torsional rigidity of DNA on base composition

Abstract

THE Escherichia coli phage 434 represser binds as a dimer to the operator of the DNA helix. Although the centre of the operator is not in contact with protein, the represser binding affinity can be reduced at least 50-fold by changing the sequence there1: operators with A·T base pairs near their centre bind the represser more strongly than do operators with G·C base pairs at the same positions. To explain these observations, it has been proposed that the base composition at the centre of the operator affects the affinity of the operator for represser by altering the ease with which operator DNA can undergo the torsional deformation necessary for complex formation 1,2. In this model, the variation in binding affinity would require the torsion constant to have specific values and to change in a sequence-dependent manner1. We have now measured torsion constants for DNAs with widely different base compositions. Our results indicate that the torsion constants depend only slightly on the overall composition, and firmly delimit the range of values for each. Even the upper-limit values are much too small to account for the observed changes in affinity of the 434 represser. These results rule out simple models that rely on substantial generic differences in torsion constant between A·T-rich sequences and G·C-rich sequences, although they do not rule out the possibility of particular sequences having abnormal torsion constants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Koudelka, G. B., Harbury, P., Harrison, S. C. & Ptashne, M. Proc. natn. Acad. Sci. U.S.A. 85, 4633–4637 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Hogan, M. E. & Austin, R. H. Nature 329, 263–266.

  3. Schurr, J. M. Chem. Phys. 84, 71–96 (1984).

    Article  CAS  Google Scholar 

  4. Allison, S. A. & Schurr, J. M. Chem. Phys. 41, 35–59 (1979).

    Article  CAS  Google Scholar 

  5. Thomas, J. C., Allison, S. A., Appellof, C. J. & Schurr, J. M. Biophys. Chem. 12, 177–188 (1980).

    Article  CAS  Google Scholar 

  6. Thomas, J. C. & Schurr, J. M. Biochemistry 22, 6194–6198 (1983).

    Article  CAS  Google Scholar 

  7. Shibata, J. H., Wilcoxon, J., Schurr, J. M. & Knauf, V. Biochemistry 23, 1188–1194 (1984).

    Article  CAS  Google Scholar 

  8. Fujimoto, B. S., Shibata, J. H., Schurr, R. L. & Schurr, J. M. Biopolymers 24, 1009–1022 (1985).

    Article  CAS  Google Scholar 

  9. Wu, P. et al. Biochemistry 27, 8128–8144 (1988).

    Article  CAS  Google Scholar 

  10. Schurr, J. M., Fujimoto, B. S., Wu, P. & Song, L. in Applications of Fluorescence Spectroscopy (ed. Lakowicz, J. R.) ( in the press).

  11. Shibata, J. H., Fujimoto, B. S. & Schurr, J. M. Biopolymers 24, 1909–1930 (1985).

    Article  CAS  Google Scholar 

  12. Song, L. & Schurr, J. M. Biopolymers (in the press).

  13. Taylor, W. H. & Hagerman, p. J. J. molec. Biol. (in the press).

  14. Waring, M. J. J. Molec. Biol. 13, 783–801 (1965).

    Article  Google Scholar 

  15. Le Pecq, J. B. & Paoletti, C. J. molec. Biol. 27, 87–106 (1967).

    Article  CAS  Google Scholar 

  16. Müller, W. & Crothers, D. M. Eur. J. Biochem. 54, 267–277 (1975).

    Article  Google Scholar 

  17. Nelson, J. W. & Tinoco, I. Jr Biopolymers 23, 213–233 (1984).

    Article  CAS  Google Scholar 

  18. Wu, P., Fujimoto, B. S. Song, L. & Schurr, J. M. Biophys. Chem. (manuscript submitted).

  19. Millar, D. P., Robbins, R. J. & Zewail, A. H. J. chem. Phys. 76, 2080–2094 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Ashikawa, I., Kinosita, K. Jr. & Ikegami, A. Biochim biophys. Acta 789, 87–93 (1984).

    Article  Google Scholar 

  21. Hogan, M., Wang, J., Austin, R. H., Monitto, C. L. & Hershkowitz, S. Proc. natn. Acad. Sci. U.S.A. 79, 3518–3522 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Hogan, M., LeGrange, J. & Austin, R. H. Nature 304, 752–754 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Anderson, J. E., Ptashne, M. & Harrison, S. C. Nature 326, 888–891 (1987).

    Article  ADS  Google Scholar 

  24. Koudelka, G. B., Harrison, S. C. & Ptashne, M. Nature 326, 886–888 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Thomas, T. J. & Bloomfield, V. A. Nucleic. Acids Res. 11, 1919–1930 (1983).

    Article  CAS  Google Scholar 

  26. Chen, H. H., Rau, D. C. & Charney, D. C. J. biomolec. Struct. Dyn. 2, 709–719 (1985).

    Article  CAS  Google Scholar 

  27. Wu, H.-M. & Crothers, D. M. Nature 308, 509–513 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Liu-Johnson, H.-N., Gartenberg, M. R. & Crothers, D. M. Cell 47, 995–1005 (1986).

    Article  CAS  Google Scholar 

  29. Allison, S. A., Austin, R. H. & Hogan, M. E. J. chem. Phys. 90, 3845–3854 (1989).

    Article  ADS  Google Scholar 

  30. Barkley, M. D. & Zimm, B. H. J. chem. Phys. 70, 2991–3007 (1979).

    Article  ADS  CAS  Google Scholar 

  31. Song, L. & Schurr, J. M. Biopolymers (in the press).

  32. Diekmann, S., Hillen, W., Morgenmeyer, B., Wells, R. D. & Pörschke, D. Biophys. Chem. 15, 263–270 (1982).

    Article  CAS  Google Scholar 

  33. Pörschke, D., Zacharias, W. & Wells, R. D. Biopolymers 26, 1971–1974 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimoto, B., Schurr, J. Dependence of the torsional rigidity of DNA on base composition. Nature 344, 175–178 (1990). https://doi.org/10.1038/344175a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344175a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing