Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Determination of valence and cation distributions by resonant powder X-ray diffraction

Abstract

X-RAY crystallographic methods are important in determining the ordered atomic structures of matter from single-crystal or powder1diffraction data. But because the scattering factor depends on atomic number, it is not always possible to distinguish between atoms with very similar numbers of electrons, such as neighbouring elements or different valence states of the same element. By selecting an X-ray wavelength at an elemental absorption edge, the scattering power of that element is drastically altered by anomalous dispersion. Here I show that the resulting resonant X-ray diffraction data can provide information about valence states and cation distributions. I use powder data collected at the europium Lm edge using the SERC Daresbury Synchrotron Radiation Source to study the valence distribution in Eu3O4 and to determine the composition and cation and valence ordering in a new compound, EuSm2O4. Such resonant X-ray diffraction methods should be applicable to almost all elements heavier than calcium for contrasting different electronic states of the resonant element and for differentiating it from neighbouring elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Attfleld, J. P., Sleight, A. W. & Cheetham, A. K. Nature 322, 620–622 (1986).

    Article  ADS  Google Scholar 

  2. Templeton, L. K., Templeton, D. H., Phizackerley, R. P. & Hodgson, K. O. Acta crystallogr. A38, 74–78 (1982).

    Article  Google Scholar 

  3. Karle, J. Phys. Today 42(6), 22–29 (1989).

    Article  CAS  Google Scholar 

  4. Flack, H. D. Acta crystallogr. A39, 876–881 (1983).

    Article  Google Scholar 

  5. Will, G., Masciocchi, N., Hart, M. & Parrish, W. Acta crystallogr. A43, 677–683 (1987).

    Article  Google Scholar 

  6. Moroney, L. M., Thompson, P. & Cox, D. E. J. appl. Crystallogr. 21, 206–208 (1988).

    Article  CAS  Google Scholar 

  7. Otsuka, K., Jinno, K. & Morikawa, A. J. Catal. 100, 353–359 (1986).

    Article  CAS  Google Scholar 

  8. Campbell, K. D., Zhang, H. & Lunsford, J. H. J. phys. Chem. 92, 750–753 (1988).

    Article  CAS  Google Scholar 

  9. Rau, R. C. Acta crystallogr. 20, 716–723 (1966).

    Article  CAS  Google Scholar 

  10. Rau, R. C. in Rare Earth Research Vol. 2, (ed. Vorres, K. S.) 117 (Gordon & Breach, New York. 1964).

    Google Scholar 

  11. Nat. Bur. Stand. Monogr. 25, 20, 50 (1984).

  12. Perakis, N. & Kern, F. C. r. hebd. Séanc. Acad. Sci. Paris 275B, 677–680 (1972).

    CAS  Google Scholar 

  13. Rietveld, H. M. J. appl. Crystallogr. 2, 65–71 (1969).

    Article  CAS  Google Scholar 

  14. Wiles, D. B. Si Young, R. A. J. appl. Crystallogr. 15, 430–438 (1982).

    Article  Google Scholar 

  15. Pauling, L. & Shappell, M. D. Z. Kristallogr. 75, 128–142 (1930).

    CAS  Google Scholar 

  16. International Tables for X-ray Crystallography Vol. 4, 99–101 (Kynoch, Birmingham, 1974).

  17. Tokonami, M. Acta crystallogr. 19, 486 (1965).

    Article  CAS  Google Scholar 

  18. Cramer, D. T. J. appl. Crystallogr. 16, 437 (1983).

    Article  Google Scholar 

  19. Finkel'shtein, I. D. et al. Bull. Acad. Sci. USSR 38(3), 195–198 (1974).

    Google Scholar 

  20. Cromer, D. T. J. phys. Chem. 61, 753–755 (1957).

    Article  CAS  Google Scholar 

  21. Ghatikar, M. N. & Padalia, B. D. J. Phys. C11, 1941–1955 (1978).

    ADS  CAS  Google Scholar 

  22. Templeton, L. K. & Templeton, D. H. J. appl. Crystallogr. 21, 558–561 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attfield, J. Determination of valence and cation distributions by resonant powder X-ray diffraction. Nature 343, 46–49 (1990). https://doi.org/10.1038/343046a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343046a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing