Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of cloud microphysics in high-cloud feedback effects on climate change

Abstract

THE effect of clouds on the radiation balance of the Earth (cloud forcing) is such that, on average, they cause the mean surface temperature to decrease. When the climate system is perturbed, the cloud forcing may change and this change will exert a feedback on the system. Climate models predict that clouds will have an overall positive feedback effect, that is, their presence will tend to enhance any surface-temperature changes, as in the greenhouse effect for example. The models preferentially increase the amounts of high clouds and their optical depths and decrease the amount of low clouds. Here I look at the temperature dependence of the infrared emittance of high clouds using data from a ground-based lidar/radiometer and in situ aircraft measurements of cloud properties. I conclude that the infrared emittances of high clouds are less sensitive to changes in temperature than predicted by climate models, chiefly because the microphysics of cirrus clouds modifies the relationship between cloud optical depth and cloud ice/liquid water path, in ways not accounted for in the models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stephens, G. L. & Webster, P. J. J. atmos. Sci. 38, 235–247 (1981).

    Article  ADS  Google Scholar 

  2. Charlock, T. P. Tellus 34, 245–254 (1982).

    Article  ADS  Google Scholar 

  3. Cess, R. D. & Potter, G. R. Tellus 39, 460–473 (1987).

    Article  Google Scholar 

  4. Ramanathan, V. et al. Science 243, 57–63 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Manabe, S. & Wetherald, R. T. J. atmos. Sci. 24, 241–259 (1967).

    Article  ADS  CAS  Google Scholar 

  6. Hansen, J. A. et al. in Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser. 29, 130–163 (1984).

    Google Scholar 

  7. Wilson, C. A. & Mitchell, J. F. B. J. geophys. Res. 92, 13,315–13,343 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Wetherald, R. T. & Manabe, S. J. atmos. Sci. 45, 1397–1415 (1988).

    Article  ADS  Google Scholar 

  9. Schlesinger, M. E. & Mitchell, J. F. B. Rev. Geophys. 25, 760–798 (1987).

    Article  ADS  Google Scholar 

  10. Roeckner, E. Atmos. Res. 21, 293–303 (1988).

    Article  Google Scholar 

  11. Roeckner, E. et al. Nature 329, 138–140 (1987).

    Article  ADS  Google Scholar 

  12. Schlesinger, M. E. Nature 335, 303–304 (1988).

    Article  ADS  Google Scholar 

  13. Heymsfield, A. J. J. atmos. Sci. 34, 367–391 (1977).

    Article  ADS  Google Scholar 

  14. Heymsfield, A. J. & Platt, C. M. R. J. atmos. Sci. 41, 846–855 (1984).

    Article  ADS  Google Scholar 

  15. Platt, C. M. R. in Proc. Int. Radiation Symp, Perugia, 1984, 163–166 (Deepak, Hampton, Virginia, 1984).

    Google Scholar 

  16. Platt, C. M. R., Dilley, A. C. & Scott, J. C. J. atmos. Sci. 44, 729–747 (1987).

    Article  ADS  Google Scholar 

  17. Platt, C. M. R. & Harshvardhan J. geophys. Res. 93, 11,051–11,058 (1988).

    Article  ADS  Google Scholar 

  18. Platt, C. M. R. & Stephens, G. L. J. atmos. Sci. 37, 2314–2322 (1980).

    Article  ADS  Google Scholar 

  19. McClatchey, R. A., Fenn, R. W., Selby, J. E. A., Volz, F. E. & Garing, J. S. Optical Properties of the Atmosphere (3rd edn, Rep. No. AFCRL-72-8497 (Air Force Cambridge Research Laboratories, Massachusetts, 1972).

    Google Scholar 

  20. Stephens, G. L. J. atmos. Sci. 35, 2123–2132 (1978).

    Article  ADS  Google Scholar 

  21. Somerville, R. C. J. & Remer, L. A. J. geophys. Res. 89, 9668–9674 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platt, C. The role of cloud microphysics in high-cloud feedback effects on climate change. Nature 341, 428–429 (1989). https://doi.org/10.1038/341428a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341428a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing