Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbonaceous aerosols from different tropical biomass burning sources

Abstract

FOLLOWING a repetitive pattern, biomass burning affects the intertropical belt on a continental scale during the dry season1. The importance of these anthropogenic activities with regard to carbonaceous-component emissions into the global atmosphere is now well recognized2-4. It has been suggested that large injections of black carbon aerosols from the Tropics are of potential importance for the radiative and chemical balance of the troposphere5-10. Studies on carbonaceous aerosols have indicated that, on an annual basis, the intensity of the emissions from tropical biomass burning could compare with that of emissions from fossil-fuel burning in industrial countries7,8. Also, results from combustion chamber experiments have determined the important range of the emission factor for both the organic and the black carbon components of the aerosol1-16. Following on from our earlier studies on total atmospheric particulate carbon (Ct) and isotopic composition (δ13C) (ref. 2), we now present new data on the black carbon content (Cb) of atmospheric particles sampled during the biomass-burning season in the wooden savannah of the Ivory Coast. The Cb/Ct ratio is generally lower than expected and highly variable. This variability indicates that there are drastic changes in source apportionment, which from our isotope studies may be ascribed to the variety of vegetation fuel and also to the mode of combustion. Therefore the Cb/Ct ratio can potentially discriminate biomass-burning emissions from different tropical ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Seiler, W. & Crutzen, P. J. Climatic Change 2, 207–247 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Cachier, H., Buat-Ménard, P., Fontugne, M. & Rancher, J. J. atmos. Chem. 3, 469–489 (1985).

    Article  CAS  Google Scholar 

  3. Harriss, R. C. et al. J. geophys. Res. 93, 1351–1360 (1988).

    Article  ADS  Google Scholar 

  4. Greenberg, J. P., Zimmerman, P. R., Heidt, L. & Pollock, W. J. geophys. Res. 89, 1350–1354 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Andreae, M. O. Science 220, 1148–1151 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Turco, R. P., Toon, O. B., Whitten, R. C., Pollack, J. B. & Hamill, P. in Precipitation, Scavenging, Dry Deposition and Resuspension Vol. 2 (eds Pruppacher, H. et al.) 1337–1351 (New York, Elsevier, 1982).

    Google Scholar 

  7. Cachier, H., Buat-Ménard, P., Fontugne, M. & Chesselet, R. Tellus 388, 161–177 (1986).

    Article  Google Scholar 

  8. Cachier, H. thesis, Univ. Paris (1987).

  9. Suman, D. J. atmos. Chem. 6, 21–34 (1988).

    Article  CAS  Google Scholar 

  10. Andreae, M. O. et al. J. geophys. Res. 93, 1509–1527 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Crutzen, P. J., Galbally, I. E. & Brühl, C. Climatic Change 6, 323–364 (1984).

    Article  CAS  Google Scholar 

  12. Muhlbaier, J. L. & Williams, R. L. in Paniculate Carbon Atmospheric Life Cycle (eds Wolff, G. T. & Klimisch, R. L.), 185–198 (New York, Plenum, 1982).

    Google Scholar 

  13. Patterson, E. M., McMahon, C. K. & Ward, D. E. Geophys. Res. Lett. 13, 129–132 (1986).

    Article  ADS  Google Scholar 

  14. Cooper, J. A. J. Air Pollut. Control Assoc. 30, 855–861 (1980).

    Article  CAS  Google Scholar 

  15. Dod, R. L., Brown, N. J., Mowrer, F. W., Novakov, T. & Williamson, R. B. Aerosol Sci. Technol. 10, 20–27 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Rau, J. A. Aerosol Sci. Technol. 10, 181–192 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Cachier, H., Brémond, M. P. & Buat-Ménard, P. Tellus 41B, 379–390 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Brémond, M. P., Cachier, H. & Buat-Ménard, P. Environ. Tech. Lett. 10, 339–346 (1989).

    Article  Google Scholar 

  19. Tillman, D. A. in Woods as an Energy Resource (Academic, New York, 1978).

    Google Scholar 

  20. Woodwell, G. M. et al. Science 222, 1081–1086 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Delmas, R. Geophys. Res. Lett. 7, 761–764 (1982).

    Article  ADS  Google Scholar 

  22. Booth, W. Science 243, 1428–1429 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Malingreau, J. P. & Tucker, C. J. La Recherche 185, 181–188 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cachier, H., Brémond, MP. & Buat-Ménard, P. Carbonaceous aerosols from different tropical biomass burning sources. Nature 340, 371–373 (1989). https://doi.org/10.1038/340371a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340371a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing