Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Compositional convection in viscous melts

Abstract

DURING solidification of multi-component melts, gradients in temperature and composition develop on different scales because of the large difference between their respective molecular diffusivities. Two consequences are the development of double-diffusive convection1 and the creation of mushy zones in which solid and liquid intimately coexist with a complex small-scale geometry2,3. Theoretical analysis requires simplifying assumptions that must be verified by laboratory experiments. Hitherto, experiments have been carried out with aqueous solutions which do not accurately represent the dynamics of melts with high Prandtl numbers, such as magmas. Here we describe the characteristics of compositional convection using a new experimental technique which allows the viscosity of the solution to be varied independently of chemical composition and liquidus temperature. A supereutectic melt was cooled from below, causing the growth of a horizontal layer of crystals. Convective instability occurred when the local solutal Rayleigh number of the compositional boundary layer ahead of the advancing crystallization front attained a value of 3 on average. We observed a novel regime of convection in which the thermal boundary layer above the crystallization front was essentially unmodified by the motion of the plumes. The plumes carried a small heat flux and did not mix the fluid to a uniform temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Huppert, H. E. & Turner, J. S. J. Fluid Mech. 106, 299–329 (1981).

    Article  ADS  Google Scholar 

  2. Huppert, H. E. & Worster, M. G. Nature 314, 703–707 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Worster, M. G. J. Fluid Mech. 167, 481–501 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Olson, P. & Singer, H. J. Fluid Mech. 158, 511–531 (1985).

    Article  ADS  Google Scholar 

  5. Copley, S. M., Giamei, A. F., Johnson, S. M. & Hornbecker, M. F. Metall. Trans. 1, 2193–2204 (1970).

    Article  CAS  Google Scholar 

  6. Howard, L. N. in Proc. 11th. Int. Cong. appl. Mech. 1109–1115 (Springer, Berlin, 1964).

    Google Scholar 

  7. Sample, A. & Hellawell, A. Metall. Trans. 15A, 2163–2173 (1984).

    Article  CAS  Google Scholar 

  8. Coriell, S. R., Cordes, M. R., Boettinger, W. J. & Sekerka, R. F. J. Cryst. Growth 49, 13–28 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Hurle, D. T. J., Jakeman, E. & Wheeler, A. A. Phys. Fluids 26, 624–626 (1983).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Mullins, W. W. & Sekerka, R. F. J. appl. Phys. 35, 444–451 (1964).

    Article  ADS  Google Scholar 

  11. Carslaw, H. S. & Jaeger, J. C. Conduction of heat in solids (Oxford Univ. Press, 1986).

    MATH  Google Scholar 

  12. Andrussow, L. & Schramm, B. in Eigenschaften der Materie in ihren Aggregatzustanden Teil 5 Transportphanomene 1–729 (Springer, Berlin, 1969).

    Google Scholar 

  13. Turner, J. S. Buoyancy effects in fluids (Cambridge Univ. Press, 1973).

    Book  Google Scholar 

  14. Brandeis, G. & Jaupart, C. Contr. Miner. Petrol. 96, 24–34 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Henderson, P., Nolan, J., Cunningham, G. C. & Lowry, R. K. Contr. Miner. Petrol. 89, 263–272 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Sparks, R. S. J. & Huppert, H. E. Contr. Miner. Petrol. 85, 300–309 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Gibb, F. G. F. & Henderson, C. M. B. Scot. J. Geol. 14, 1–27 (1978).

    Article  CAS  Google Scholar 

  18. Henderson, C. M. B. & Gibb, F. G. F. Trans. R. Soc. Edinburgh 77, 325–347 (1987).

    Article  Google Scholar 

  19. Jacobeen, F. H. thesis, Univ. Princeton (1949).

  20. Walker, F. Bull. geol. Soc. Am. 51, 1059–1106 (1940).

    Article  CAS  Google Scholar 

  21. Page, N. J. et al. in The Stillwater Complex, Montana: Geology and Guide (eds Czamanske, G. K. & Zientek, M. L.) (Montana Bureau of Mines and Geology, spec. Publn 92, 1985).

    Google Scholar 

  22. Irvine, T. N. & Smith, C. H. in Ultramafic and related rocks (ed. Wyllie, P. J.) (Wiley, New York, 1967).

    Google Scholar 

  23. Wilson, A. H. J. Petrol 23, 240–292 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tait, S., Jaupart, C. Compositional convection in viscous melts. Nature 338, 571–574 (1989). https://doi.org/10.1038/338571a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338571a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing