Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Influence of productivity variations on long-term atmospheric CO2

Abstract

Evidence from ice cores1 and deep-sea sediments2 shows that atmospheric CO2 concentration has varied by up to 40% over the past few hundred thousand years. As most of the exchangeable carbon resides in the deep sea, large changes in the atmosphere must have their source here. The distribution of carbon in the ocean is linked to biological productivity, the sinking and degradation of organic matter and calcium carbonate, and ocean circulation3. Carbon-cycle models predict different (and sometimes conflicting) shifts in productivity, and estimates of past productivity constrain the range of possible solutions. Here I use planktonic foraminifera species data in modern and ice-age Atlantic sediments to assess spatial patterns of changes in productivity. Ice-age export productivity was higher than at present by nearly 40% for the whole Atlantic, and by 90% under the Equator. These changes, if extrapolated to the global ocean, support models in which a significant portion of CO2 changes are driven by variations in biological productivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Nature 329, 408–414 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Shackleton, N. J., Hall, M. A., Line, J. & Shuxi, C. Nature 306, 319–322 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Broecker, W. S. & Peng, T.-H. Radiocarbon 28, 309–327 (1986).

    Article  CAS  Google Scholar 

  4. Broecker, W. S. Geochim. cosmochim. Acta 46, 1689–1705 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Boyle, E. A. Geochim. cosmochim. Acta 50, 265–276 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Boyle, E. A. Paleoceanography 3, 471–490 (1988).

    Article  ADS  Google Scholar 

  7. Takahashi, T., Broecker, W. S. & Bainbridge, A. E. in Carbon Cycle Modeling (ed. Bolin, B.) 159–199 (Wiley, New York, 1981).

    Google Scholar 

  8. Toggweiler, J. R. & Sarmiento, J. L. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) Monogr. 32, 163–184 (Am. Geophys. Un., Washington DC, 1985).

    Google Scholar 

  9. Ennever, F. K. & McElroy, M. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) Monogr. 32, 154–162 (Am. Geophys. Un., Washington DC, 1985).

    Google Scholar 

  10. Wenk, T. & Siegenthaler, U. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) Monogr. 32, 185–194 (Am. Geophys. Un., Washington DC, 1985).

    Google Scholar 

  11. Martin, J. H. & Fitzwater, S. E. Nature 331, 341–343 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  13. Siegenthaler, U. & Wenk, T. Nature 308, 624–626 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Boyle, E. A. in Mesozoic and Cenozoic Oceans (ed. Hsu, K. J.) 337–351 (Am. Geophys. Un., Washington DC, 1986).

    Google Scholar 

  15. Boyle, E. A. & Keigwin, L. D. Nature 330, 35–40 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Cofer-Shabica, N. & Peterson, L. Geol. Soc. Am. Abstr. Prog. 18, 567 (1986).

    Google Scholar 

  17. Oppo, D. & Fairbanks, R. G. Earth planet. Sci. Lett. 86, 1–15 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Zahn, R., Sarnthein, M. & Erlenkeuser, H. Paleoceanography 2, 543–560 (1987).

    Article  ADS  Google Scholar 

  19. Kallel, N., Labeyrie, L. D., Juillet-Leclerc, A. & Duplessy, J.-C. Nature 333, 651–655 (1988).

    Article  ADS  Google Scholar 

  20. Duplessy, J.-C. et al. Paleoceanography 3, 343–360 (1988).

    Article  ADS  Google Scholar 

  21. Keir, R. Paleoceanography 3, 413–446 (1988).

    Article  ADS  Google Scholar 

  22. Muller, P. J. & Suess, E. Deep-Sea Res. 26A 1347–1362 (1979).

    Article  ADS  Google Scholar 

  23. Sarnthein, M., Winn, K., Duplessy, J.-C. & Fontugne, M. R. Paleoceanography 3, 361–399 (1988).

    Article  ADS  Google Scholar 

  24. Suess, E. & Muller, P. J. Colloq. Intern. CNRS 293, 17–26 (Ed. Centr. Natn. Rech. Sci., Paris, 1980).

    Google Scholar 

  25. Emerson, S. & Hedges, J. Paleoceanography 3, 621–634 (1988).

    Article  ADS  Google Scholar 

  26. Muller, P. J., Erlenkeuser, H. & von Grafenstein, R. in Coastal Upwelling, its Sediment Record, Part B: Sedimentary Record of Ancient Coastal Upwelling (eds Thiede, J. & Suess, E.) 365–398 (Plenum, New York, 1983).

    Book  Google Scholar 

  27. Prahl, F. & Muelhausen, L. in Productivity of the Ocean: Present and Past (eds Berger, W. H., Smetacek, V. S. & Wefer, G.) 271–289 (Wiley, New York, 1989).

    Google Scholar 

  28. Imbrie, J. & Kipp, N. G. in The Late Cenozoic Glacial Ages (ed. Turekian, K. K.) 77–181 (Yale Univ. Press, New Haven, 1971).

    Google Scholar 

  29. CLIMAP GSA Map and Chart Series MC-36 (1981).

  30. Mix, A. C. in Productivity of the Ocean: Present and Past (eds Berger, W. H., Smetacek, V. S., & Wefer, G.) 313–340 (Wiley, New York, 1989).

    Google Scholar 

  31. Berger, W. H., Fischer, K., Lai, C. & Wu, G. Scripps Inst. Oceanogr. Ref. 87-30 1–67 (1987).

  32. Koblentz-Mischke, O. I., Volkovinskiy, V. V. & Kabanova, J. G. in Scientific Exploration of the South Pacific (ed. Wooster, W.) 183–193 (Natn. Acad., Washington DC, 1970).

    Google Scholar 

  33. Lyle, M., Nature 335, 529–532 (1988).

    Article  ADS  CAS  Google Scholar 

  34. Curry, W. & Lohmann, G. P. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.), Monogr. 32, 285–301 (Am. Geophys. Un., Washington DC, 1985).

    Google Scholar 

  35. Mix, A. C., Ruddiman, W. F. & McIntyre, A. Paleoceanography 1, 43–66 (1986).

    Article  ADS  Google Scholar 

  36. Boyle, E. A. J. geophys. Res. 93, 15701–15714 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mix, A. Influence of productivity variations on long-term atmospheric CO2. Nature 337, 541–544 (1989). https://doi.org/10.1038/337541a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337541a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing