Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input

Abstract

In several species, the peripheral input from the eyes partly determines the pattern of interconnections between the visual areas of the two cerebral hemispheres through the fibre tract termed the corpus callosum1–9. In the macaque monkey, the neurons projecting through the callosum are largely restricted to area 18 throughout ontogeny, whereas area 17 is characterized by few or no callosal projections10–12. Here, we show that suppressing the peripheral input by prenatal removal of the eyes leads to a marked reduction in the extent of area 17, resulting in a large shift in the position of the histologically identifiable boundary between the two areas. Even so, the boundary continues to separate an area rich with callosal connections (area 18) from one poor in such projections (area 17), indicating there is no effect on the callosal connectivity of area 17. In contrast, in area 18, eye removal results in many more neurons with callosal projections than in normal animals. The results suggest that the factors that determine the parcellation of cortical areas also specify their connectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Innocenti, G. M. & Frost, D. O. Nature 280, 231–233 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Innocenti, G. M. & Frost, D. O. Expl Brain Res. 39, 365–375 (1980).

    Article  CAS  Google Scholar 

  3. Rhoades, R. W. & Dellacroce, D. D. Brain Res. 202, 189–195 (1980).

    Article  CAS  Google Scholar 

  4. Cusick, C. G. & Lund, R. D. J. comp. Neurol. 212, 385–398 (1982).

    Article  CAS  Google Scholar 

  5. Rothblat, L. A. & Hayes, L. L. Brain Res. 246, 146–149 (1982).

    Article  CAS  Google Scholar 

  6. Rhoades, R. W. & Fish, S. E. Expl Brain Res. 51, 451–462 (1983).

    Article  Google Scholar 

  7. Lund, R. D., Chang, F.-L.F. & Land, P. W. Devl Brain Res. 14, 139–142 (1984).

    Article  Google Scholar 

  8. Grigonis, A. M., Murphy, E. H. & Ostrach, L. H. Soc. Neurosci. Abstr. 10, 53 (1984).

    Google Scholar 

  9. Olavarria, J. & Van Sluyters, R. C. J. comp. Neurol. 230, 249–268 (1984).

    Article  CAS  Google Scholar 

  10. Dehay, C., Kennedy, H. & Bullier, J. J. comp. Neurol. 254, 20–33 (1986).

    Article  CAS  Google Scholar 

  11. Dehay, C., Kennedy, H., Bullier, J. & Berland, M. Nature 331, 348–350 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Dehay, C. & Kennedy, H. Behav. Brain Res. 29, 237–244 (1988).

    Article  CAS  Google Scholar 

  13. Rakic, P. Science 241, 170–176 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Kennedy, H., Bullier, J. & Dehay, C. Expl Brain Res. 61, 204–209 (1985).

    Article  CAS  Google Scholar 

  15. Kennedy, H. & Dehay, C. Behav. Brain Res. 29, 225–236 (1988).

    Article  CAS  Google Scholar 

  16. Kennedy, H., Dehay, C. & Bullier, J. J. comp. Neurol. 247, 398–415 (1986).

    Article  CAS  Google Scholar 

  17. Rakic, P. & Williams, R. W. Soc. Neurosci Abstr. 12, 1499 (1986).

    Google Scholar 

  18. Mesulam, M. M. et al. J. Histochem. Cytochem. 28, 1255–1259 (1980).

    Article  CAS  Google Scholar 

  19. Wong-Riley, M. Brain Res. 171, 11–28 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehay, C., Horsburgh, G., Berland, M. et al. Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input. Nature 337, 265–267 (1989). https://doi.org/10.1038/337265a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337265a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing